Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Basic Trigonometric Identities and Equations Trigonometric Identities Quotient Identities sin tan cos cos cot sin Reciprocal Identities 1 sin csc 1 cos sec 1 tan cot Pythagorean Identities sin2 + cos2 = 1 tan2 + 1 = sec2 cot2 + 1 = csc2 sin2 = 1 - cos2 tan2 = sec2 - 1 cot2 = csc2 - 1 cos2 = 1 - sin2 Where did our pythagorean identities come from?? Do you remember the Unit Circle? • What is the equation for the unit circle? x2 + y2 = 1 • What does x = ? What does y = ? (in terms of trig functions) sin2θ + cos2θ = 1 Pythagorean Identity! Take the Pythagorean Identity and discover a new one! Hint: Try dividing everything by cos2θ sin2θ + cos2θ = 1 . cos2θ cos2θ cos2θ tan2θ + 1 = sec2θ Quotient Identity another Pythagorean Identity Reciprocal Identity Take the Pythagorean Identity and discover a new one! Hint: Try dividing everything by sin2θ sin2θ + cos2θ = 1 . sin2θ sin2θ sin2θ 1 + cot2θ = csc2θ Quotient Identity a third Pythagorean Identity Reciprocal Identity Using the identities you now know, find the trig value. 1.) If cosθ = 3/4, find secθ 2.) If cosθ = 3/5, find cscθ. sin 2 cos 2 1 1 1 4 sec cos 3 3 4 2 3 sin 2 1 5 25 9 sin 2 25 25 16 2 sin 25 4 sin 5 csc 1 1 5 sin 4 4 5 3.) sinθ = -1/3, find tanθ tan 2 1 sec 2 tan 2 1 (3) 2 tan 2 2 tan 2 8 tan 2 8 4.) secθ = -7/5, find sinθ Simplifying Trigonometric Expressions Identities can be used to simplify trigonometric expressions. Simplify. a) cos sin tan sin cos sin cos sin2 cos cos cos sin cos 1 cos 2 sec 2 cot 2 1 sin2 b) cos 2 2 sin cos 2 1 cos 2 1 2 sin cos2 1 2 sin csc 2 Simplifing Trigonometric Expressions c) (1 + tan x)2 - 2 sin x sec x 1 cos x sin x 2 1 2 tan x tan x 2 cos x (1 tan x) 2 sin x 2 1 tan2 x 2tanx 2 tanx sec2 x d) csc x tan x cot x 1 sin x sin x cos x cos x sin x 1 sin x sin 2 x cos 2 x sin xcos x 1 sin x 1 sin x cos x 1 sin x cos x sin x 1 cos x Simplify each expression. 1 cos x cos x sin x sin x sin cos sin 1 sin x cos x sin x cos x 1 sin sin cos 1 1 sec cos cos 2 x sin 2 x sin x sin x cos 2 x sin 2 x sin x 1 csc x sin x Simplifying trig Identity Example1: simplify tanxcosx sin x tanx cosx cos x tanxcosx = sin x Simplifying trig Identity Example2: simplify sec x csc x 1 cos sec x csc 1x sin x = 1 sinx x cos x 1 = sin x cos x = tan x Simplifying trig Identity Example2: simplify cos2x - sin2x cos x cos2x - sin 1 2x cos x = sec x Example Simplify: = cot x (csc2 x - 1) Factor out cot x = cot x (cot2 x) Use pythagorean identi = cot3 x Simplify Example Simplify: = sin x (sin x) + cos x cos x cos x 2 = sin x + (cos x)cos x cos x = sin2 x + cos2x cos x = 1 cos x = sec x Use quotient identity Simplify fraction with LCD Simplify numerator Use pythagorean iden Use reciprocal identity Your Turn! Combine fraction Simplify the numerator Use pythagorean identity Use Reciprocal Identity Practice 1 One way to use identities is to simplify expressions involving trigonometric functions. Often a good strategy for doing this is to write all trig functions in terms of sines and cosines and then simplify. Let’s see an example of this: substitute using each identity sin x tan x cos x tan x csc x Simplify: sec x simplify sin x 1 cos x sin x 1 cos x 1 cos x 1 cos x 1 1 csc x sin x 1 sec x cos x Another way to use identities is to write one function in terms of another function. Let’s see an example of this: Write the following expression in terms of only one trig function: cos x sin x 1 2 = 1 sin 2 x sin x 1 This expression involves both sine and cosine. The Fundamental Identity makes a connection between sine and cosine so we can use that and solve for cosine squared and substitute. = sin 2 x sin x 2 sin 2 x cos 2 x 1 cos 2 x 1 sin 2 x (E) Examples • Prove tan(x) cos(x) = sin(x) LS tan x cos x sin x LS cos x cos x LS sin x LS RS 20 (E) Examples • Prove tan2(x) = sin2(x) cos-2(x) RS sin 2 x cos 2 x 1 2 RS sin x 2 cos x 1 2 RS sin x cos x 2 RS sin x 2 cos x 2 sin x RS cos x RS tan 2 x RS LS 2 21 (E) Examples • Prove tan x 1 1 tan x sin x cos x 1 tan x sin x 1 sin x cos x cos x sin x cos x cos x sin x sin x sin x cos x cos x cos x sin x 2 sin x cos2 x cos x sin x 1 cos x sin x RS LS tan x LS LS LS LS LS LS 22 (E) Examples • Prove LS LS LS LS sin 2 x 1 cos x 1 cos x sin 2 x 1 cos x 1 cos2 x 1 cos x (1 cos x )(1 cos x ) (1 cos x ) 1 cos x LS RS 23