Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 4 Identities 4.1 Fundamental Identities and Their Use 4.2 Verifying Trigonometric Identities 4.3 Sum, Difference, and Cofunction Identities 4.4 Double-Angle and Half-Angle Identities 4.5 Product-Sum and Sum-Product Identities Fundamental Identities and Their Use Fundamental identities Evaluating trigonometric identities Converting to equivalent forms Fundamental Identities Evaluating Trigonometric Identities Example Find the other four trigonometric functions of x when cos x = -4/5 and tan x = 3/4 1 1 5 1 1 4 sec x cot x cos x 4 4 tan x 3 3 5 4 3 4 3 sin x (cos x)(tan x) 5 5 4 1 1 5 csc x sin x 3 3 5 Simplifying Trigonometric Expressions •Claim: •Proof: •Claim: •Proof: 1 2 1 tan x 2 cos x 1 1 cos 2 x sin 2 x 2 1 tan x 2 2 2 cos x cos x cos x tan x cot x 1 2 cos 2 x tan x cot x sin x cos x sin x cos x tan x cot x cos x sin x sin x(cos x) cos x sin x tan x cot x sin x cos x sin x(cos x) sin x cos x cos x sin x cos x sin x sin 2 x cos 2 x 1 cos 2 x cos 2 x 2 1 2 cos x 2 2 sin x cos x 1 4.2 Verifying Trigonometric Identities Verifying identities Testing identities using a graphing calculator Verifying Identities Verify csc(-x) = -csc x 1 1 1 csc( x) csc x sin( x) sin x sin x Verify tan x sin x + cos x = sec x sin x sin 2 x cos 2 x 1 tan x sin x cos x sin x cos x sec x cos x cos x cos x Verifying Identities Verify right-to-left: sin x csc x cot x 1 cos x sin x sin x 1 cos x sin x 1 cos x 2 1 cos x 1 cos x 1 cos x 1 cos x sin x 1 cos x 1 cos x 1 cos x csc x cot x sin 2 x sin x sin x sin x Verifying Identities Using a Calculator Graph both sides of the equation in the same viewing window. If they produce different graphs they are not identities. If they appear the same the identity must still be verified. Example: sin x csc x 2 1 cos x 4.3 Sum, Difference, and Cofunction Identities Sum and difference identities for cosine Cofunction identities Sum and difference identities for sine and tangent Summary and use Sum and Difference Identities for Cosine cos(x – y) = cos x cos y - sin x sin y Claim: cos(p/2 – y) = siny Proof: cos(p/2 – y) = cos (p/2) cos y + sin(p/2) sin y = 0 cos y + 1 sin y = sin y Sum and Difference Formula for Sine and Tangent sin (x- y) = sin x cos x + cos x sin y sin x y sin x cos y cos x sin y tan x y cos x y cos x cos y sin x sin y sin x cos y cos x sin y tan x tan y cos x cos y cos x cos y cos x cos y sin x sin y 1 tan x tan y cos x cos y cos x cos y Finding Exact Values Find the exact value of cos 15º Solution: cos15 cos( 45 30) cos 45 cos 30 sin 45 sin 30 1 3 1 1 3 1 2 3 1 4 2 2 2 2 2 2 Double-Angle and Half-Angle Identities Double-angle identities Half-angle identities Double-Angle Identities 1 cos 2 x 1 cos 2 x 2 sin x and cos x 2 2 2 Using Double-Angle Identities Example: Find the exact value of cos 2x if sin x = 4/5, p/2 < x < p The reference angle is in the second quadrant. a 25 16 3 4 4 sin x , tan x 5 3 2 4 7 cos 2 x 1 2 5 25 Half-Angle Identities Using a Half-Angle Identity Example: Find cos 165º. cos165 cos 330 1 cos 330 2 2 3 cos 330 cos 30 2 3 1 2 3 2 cos165 2 2 4.5 Product-Sum and Sum-Product Identities Product-sum identities Sum-product identities Application Product-Sum Identities Using Product-Sum Identities Example: Evaluate sin 105º sin 15º. Solution: 1 sin 105 sin 15 cos105 15 cos105 15 2 1 1 1 1 cos 90 cos120 0 2 2 2 4 Sum-Product Identities Using a Sum-Product Identity Example: Write the difference sin 7q – sin 3q as a product. Solution: sin 7q sin 3q 7q 3q 7q 3q 2 cos sin 2 2 2 cos 5q sin 2q