Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
1.3 Definition II: Right Triangle Trigonometry If  is an acute angle of a right triangle, then opp adj opp sin   , cos   , tan   , hyp hyp adj hyp hyp adj csc   , sec   , cot   . opp adj opp Trigonometric Functions • Let (x, y) be a point other the origin on the terminal side of an angle  in standard position. The distance from the point to the origin is The six trigonometric functions of  are defined as follows. r  x2  y 2 . y sin   r r csc  ( y  0) y x cos  r y tan   (x  0) x r sec  ( x  0) x x cot   (y  0) y Example: Finding Function Values • The terminal side of angle  in standard position passes through the point (12, 16). Find the values of the six trigonometric functions of angle . r  x 2  y 2  122  162 (12, 16) 16  144  256  400  20  12 Example: Finding Function Values continued • x = 12 y 16 4 sin     r 20 5 x 12 3 cos    r 20 5 y 16 4 tan     x 12 3 y = 16 r = 20 r 20 5 csc    y 16 4 r 20 5 sec    x 12 3 x 12 3 cot     y 16 4 Example: Finding Function Values • Find the six trigonometric function values of the angle  in standard position, if the terminal side of  is defined by x + 2y = 0, x  0. • We can use any point on the terminal side of  to find the trigonometric function values. Example: Finding Function Values continued • Choose x = 2 x  2y  0 2  2y  0 2 y  2 y  1 • The point (2, 1) lies on the terminal side,  22  (1)2  5. andr the corresponding value of r is • Use the definitions: y 1 1 5 5 sin       r 5 5 5 5 x 2 2 5 2 5     r 5 5 5 5 y 1 r tan     csc    5 x 2 y cos  sec  r 5  x 2 cot   x  2 y Example: Function Values Quadrantal Angles • Find the values of the six trigonometric functions for an angle of 270. • First, we select any point on the terminal side of a 270 angle. We choose (0, 1). Here x = 0, y = 1 and r = 1. 1 0 sin 270   1 1 1 tan 270  undefined 0 1 sec 270  undefined 0 cos 270  0 1 1 csc 270   1 1 0 cot 270   0 1 Commonly Used Function Values  sin  cos  tan  cot  sec  1 0 0 1 0 undefined 90 1 0 undefine d 0 180 0 1 0 undefined 270 1 0 0 360 0 1 undefine d 0 undefined csc  undefine d undefined 1 1 undefine d undefined 1 1 undefine d Reciprocal Identities • 1 sin   csc 1 cos  sec 1 tan   cot  1 csc  sin  1 sec  cos 1 cot   tan  Example: Find each function value. 2 • cos  if sec  = 3 • Since cos  is the reciprocal of sec  1 1 3 cos   2 sec  3 2 15 • sin  if csc    3 1 3 sin    15 15  3 3 • 15 3 • 15   15 15 • 15 15  5 Example: Identify Quadrant • Identify the quadrant (or quadrants) of any angle  that satisfies tan  > 0, cot  > 0. • tan  > 0 in quadrants I and III • cot  > 0 in quadrants I and III • so, the answer is quadrants I and III Ranges of Trigonometric Functions • For any angle  for which the indicated functions exist: • 1. 1  sin   1 and 1  cos   1; • 2. tan  and cot  can equal any real number; • 3. sec   1 or sec   1 and csc   1 or csc   1. (Notice that sec  and csc  are never between 1 and 1.) Identities • Pythagorean sin 2   cos 2   1, tan 2   1  sec 2  , 1  cot   csc  2 2 • Quotient sin   tan  cos  cos   cot  sin  Example: Other Function Values • Find sin and cos if tan  = 4/3 and  is in quadrant III. • Since is in quadrant III, sin and cos will both be negative. • sin and cos must be in the interval [1, 1]. Example: Other Function Values continued • We use the identity tan 2   1  sec 2  2 4 2  1  s ec    3 16  1  sec 2  9 25  sec 2  9 5   sec 3 3   cos  5 tan 2   1  sec 2  Since sin 2   1  cos 2  ,  3 sin 2   1      5 9 sin 2   1  25 16 sin 2   25 4 sin    5 2 Example: If and  is in quadrant II, find each function value. 5 tan    3 • a) sec  tan 2   1  sec 2  2 Look for an identity that relates tangent and secant. tan 2   1  sec 2   5 2   1  sec   3  25  1  sec 2  9 34  sec 2  9 34 sec    9 34 sec    3 Example: If and  is in quadrant II, find each function value continued 5 tan    3 • b) sin  sin  tan   cos  cos  tan   sin   1   sec   tan   sin    3 34   5        sin   34   3  5 34  si n  34 • c) cot () 1 cot( )  tan( ) 1 cot( )   tan  1 3 cot( )      53  5 Example: Express One Function in Terms of Another 1 cot 2 x  csc 2 x 1 1  2 1 cot x csc 2 x 1 2  sin x 2 1 cot x • Express cot x in terms of sin x.  1 2  sin x 2 1 cot x 1 sin x  1 cot 2 x  1 cot 2 x sin x  1 cot 2 x Example: Rewriting an Expression in Terms of Sine and Cosine • Rewrite cot   tan  in terms of sin  and cos  . • cos sin  cot   tan    sin  cos cos 2  sin 2    sin  cos sin  cos cos 2   sin 2   sin  cos (cos  sin  )(cos  sin  )  sin  cos Example: Working with One Side • Prove the identity (tan 2 x  1)(cos 2 x  1)   tan 2 x • Solution: Start with the left side. (tan 2 x  1)(cos 2 x  1)   tan 2 x  sin 2 x  2 2  1 (cos x  1)   tan x  cos 2 x  sin 2 x 2 2 sin x   cos x  1   tan x 2 cos x 2 sin x 2 2 2 sin x  cos x   1   tan x 2 cos x 2 sin 2 x 2 1  1   tan x 2 cos x sin 2 x 2    tan x 2 cos x  tan 2 x   tan 2 x Example: Working with One Side • Prove the identity 1  csc x  sin x sec x tan x • Solution—start with the right side 1  csc x  sin x sec x tan x 1   sin x sin x 1 sin 2 x   sin x sin x • continued 1 1  sin 2 x  sec x tan x sin x cos 2 x  sin x cos x cos x  sin x 1  cot x cos x 1 1  tan x sec x 1 1  sec x tan x sec x tan x