Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
1.3 Definition II: Right Triangle Trigonometry If is an acute angle of a right triangle, then opp adj opp sin , cos , tan , hyp hyp adj hyp hyp adj csc , sec , cot . opp adj opp Trigonometric Functions • Let (x, y) be a point other the origin on the terminal side of an angle in standard position. The distance from the point to the origin is The six trigonometric functions of are defined as follows. r x2 y 2 . y sin r r csc ( y 0) y x cos r y tan (x 0) x r sec ( x 0) x x cot (y 0) y Example: Finding Function Values • The terminal side of angle in standard position passes through the point (12, 16). Find the values of the six trigonometric functions of angle . r x 2 y 2 122 162 (12, 16) 16 144 256 400 20 12 Example: Finding Function Values continued • x = 12 y 16 4 sin r 20 5 x 12 3 cos r 20 5 y 16 4 tan x 12 3 y = 16 r = 20 r 20 5 csc y 16 4 r 20 5 sec x 12 3 x 12 3 cot y 16 4 Example: Finding Function Values • Find the six trigonometric function values of the angle in standard position, if the terminal side of is defined by x + 2y = 0, x 0. • We can use any point on the terminal side of to find the trigonometric function values. Example: Finding Function Values continued • Choose x = 2 x 2y 0 2 2y 0 2 y 2 y 1 • The point (2, 1) lies on the terminal side, 22 (1)2 5. andr the corresponding value of r is • Use the definitions: y 1 1 5 5 sin r 5 5 5 5 x 2 2 5 2 5 r 5 5 5 5 y 1 r tan csc 5 x 2 y cos sec r 5 x 2 cot x 2 y Example: Function Values Quadrantal Angles • Find the values of the six trigonometric functions for an angle of 270. • First, we select any point on the terminal side of a 270 angle. We choose (0, 1). Here x = 0, y = 1 and r = 1. 1 0 sin 270 1 1 1 tan 270 undefined 0 1 sec 270 undefined 0 cos 270 0 1 1 csc 270 1 1 0 cot 270 0 1 Commonly Used Function Values sin cos tan cot sec 1 0 0 1 0 undefined 90 1 0 undefine d 0 180 0 1 0 undefined 270 1 0 0 360 0 1 undefine d 0 undefined csc undefine d undefined 1 1 undefine d undefined 1 1 undefine d Reciprocal Identities • 1 sin csc 1 cos sec 1 tan cot 1 csc sin 1 sec cos 1 cot tan Example: Find each function value. 2 • cos if sec = 3 • Since cos is the reciprocal of sec 1 1 3 cos 2 sec 3 2 15 • sin if csc 3 1 3 sin 15 15 3 3 • 15 3 • 15 15 15 • 15 15 5 Example: Identify Quadrant • Identify the quadrant (or quadrants) of any angle that satisfies tan > 0, cot > 0. • tan > 0 in quadrants I and III • cot > 0 in quadrants I and III • so, the answer is quadrants I and III Ranges of Trigonometric Functions • For any angle for which the indicated functions exist: • 1. 1 sin 1 and 1 cos 1; • 2. tan and cot can equal any real number; • 3. sec 1 or sec 1 and csc 1 or csc 1. (Notice that sec and csc are never between 1 and 1.) Identities • Pythagorean sin 2 cos 2 1, tan 2 1 sec 2 , 1 cot csc 2 2 • Quotient sin tan cos cos cot sin Example: Other Function Values • Find sin and cos if tan = 4/3 and is in quadrant III. • Since is in quadrant III, sin and cos will both be negative. • sin and cos must be in the interval [1, 1]. Example: Other Function Values continued • We use the identity tan 2 1 sec 2 2 4 2 1 s ec 3 16 1 sec 2 9 25 sec 2 9 5 sec 3 3 cos 5 tan 2 1 sec 2 Since sin 2 1 cos 2 , 3 sin 2 1 5 9 sin 2 1 25 16 sin 2 25 4 sin 5 2 Example: If and is in quadrant II, find each function value. 5 tan 3 • a) sec tan 2 1 sec 2 2 Look for an identity that relates tangent and secant. tan 2 1 sec 2 5 2 1 sec 3 25 1 sec 2 9 34 sec 2 9 34 sec 9 34 sec 3 Example: If and is in quadrant II, find each function value continued 5 tan 3 • b) sin sin tan cos cos tan sin 1 sec tan sin 3 34 5 sin 34 3 5 34 si n 34 • c) cot () 1 cot( ) tan( ) 1 cot( ) tan 1 3 cot( ) 53 5 Example: Express One Function in Terms of Another 1 cot 2 x csc 2 x 1 1 2 1 cot x csc 2 x 1 2 sin x 2 1 cot x • Express cot x in terms of sin x. 1 2 sin x 2 1 cot x 1 sin x 1 cot 2 x 1 cot 2 x sin x 1 cot 2 x Example: Rewriting an Expression in Terms of Sine and Cosine • Rewrite cot tan in terms of sin and cos . • cos sin cot tan sin cos cos 2 sin 2 sin cos sin cos cos 2 sin 2 sin cos (cos sin )(cos sin ) sin cos Example: Working with One Side • Prove the identity (tan 2 x 1)(cos 2 x 1) tan 2 x • Solution: Start with the left side. (tan 2 x 1)(cos 2 x 1) tan 2 x sin 2 x 2 2 1 (cos x 1) tan x cos 2 x sin 2 x 2 2 sin x cos x 1 tan x 2 cos x 2 sin x 2 2 2 sin x cos x 1 tan x 2 cos x 2 sin 2 x 2 1 1 tan x 2 cos x sin 2 x 2 tan x 2 cos x tan 2 x tan 2 x Example: Working with One Side • Prove the identity 1 csc x sin x sec x tan x • Solution—start with the right side 1 csc x sin x sec x tan x 1 sin x sin x 1 sin 2 x sin x sin x • continued 1 1 sin 2 x sec x tan x sin x cos 2 x sin x cos x cos x sin x 1 cot x cos x 1 1 tan x sec x 1 1 sec x tan x sec x tan x