Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Copyright © 2011 Pearson Education, Inc. Slide 10.1-1 Chapter 10: Applications of Trigonometry and Vectors 10.1 The Law of Sines 10.2 The Law of Cosines and Area Formulas 10.3 Vectors and Their Applications 10.4 Trigonometric (Polar) Form of Complex Numbers 10.5 Powers and Roots of Complex Numbers 10.6 Polar Equations and Graphs 10.7 More Parametric Equations Copyright © 2011 Pearson Education, Inc. Slide 10.1-2 10.1 The Law of Sines Congruence Axioms Side-Angle-Side (SAS) If two sides and the included angle of one triangle are equal, respectively, to two sides and the included angle of a second triangle, then the triangles are congruent. Angle-Side-Angle (ASA) If two angles and the included side of one triangle are equal, respectively, to two angles and the included side of a second triangle, then the triangles are congruent. Side-Side-Side (SSS) Copyright © 2011 Pearson Education, Inc. If three sides of one triangle are equal to three sides of a second triangle, the triangles are congruent. Slide 10.1-3 10.1 Data Required for Solving Oblique Triangles Case 1 Case 2 Case 3 Case 4 One side and two angles are known (SAA or ASA). Two sides and one angle not included between the two sides are known (SSA). This case may lead to zero, one, or two triangles. Two sides and the angle included between the two sides are known (SAS). Three sides are known (SSS). Copyright © 2011 Pearson Education, Inc. Slide 10.1-4 10.1 Derivation of the Law of Sines Start with an acute or obtuse triangle and construct the perpendicular from B to side AC. Let h be the height of this perpendicular. Then c and a are the hypotenuses of right triangle ADB and BDC, respectively. h sin A or h c sin A, c h sin C or h a sin C a a c a sin C c sin A sin A sin C Copyright © 2011 Pearson Education, Inc. Slide 10.1-5 10.1 The Law of Sines In a similar way, by constructing perpendiculars from other vertices, the following theorem can be proven. Law of Sines In any triangle ABC, with sides a, b, and c, a b c . sin A sin B sin C Alternative forms are sometimes convenient to use: sin A sin B sin C . a b c Copyright © 2011 Pearson Education, Inc. Slide 10.1-6 10.1 Using the Law of Sines to Solve a Triangle Example Solve triangle ABC if A = 32.0°, B = 81.8°, and a = 42.9 centimeters. Solution Draw the triangle and label the known values. Because A, B, and a are known, we can apply the law of sines involving these variables. a b sin A sin B 42.9 b b 80.1 cm sin 32.0 sin 81.8 Copyright © 2011 Pearson Education, Inc. Slide 10.1-7 10.1 Using the Law of Sines to Solve a Triangle To find C, use the fact that there are 180° in a triangle. A B C 180 C 180 A C 180 32.0 81.8 66.2 Now we can find c. a c sin A sin C 42.9 c sin 32.0 sin 66.2 Copyright © 2011 Pearson Education, Inc. c 74.1 cm Slide 10.1-8 10.1 Using the Law of Sines in an Application (ASA) Example Two stations are on an east-west line 110 miles apart. A forest fire is located on a bearing of N 42° E from the western station at A and a bearing of N 15° E from the eastern station at B. How far is the fire from the western station? Solution Angle BAC = 90° – 42° = 48° Angle B = 90° + 15° = 105° Angle C = 180° – 105° – 48° = 27° Using the law of sines to find b gives b 110 sin 105 sin 27 b 234 miles. Copyright © 2011 Pearson Education, Inc. Slide 10.1-9 10.1 Ambiguous Case Applying the Law of Sines 1. For any angle , –1 sin 1, if sin = 1, then = 90° and the triangle is a right triangle. 2. sin = sin(180° – ). (Supplementary angles have the same sine value.) 3. The smallest angle is opposite the shortest side, the largest angle is opposite the longest side, and the middle-value angle is opposite the intermediate side (assuming that the triangle has sides that are all of different lengths). Copyright © 2011 Pearson Education, Inc. Slide 10.1-10 10.1 Ambiguous Case Copyright © 2011 Pearson Education, Inc. Slide 10.1-11 10.1 Ambiguous Case for Obtuse Angle A Copyright © 2011 Pearson Education, Inc. Slide 10.1-12 10.1 Solving the Ambiguous Case: No Such Triangle Example Solve the triangle ABC if B = 55°40´, b = 8.94 meters, and a = 25.1 meters. Solution Use the law of sines to find A. sin A sin B a b sin A sin 55 40' 25.1 8.94 sin A 2.3184379 Since sin A cannot be greater than 1, the triangle does not exist. Copyright © 2011 Pearson Education, Inc. Slide 10.1-13 10.1 Solving the Ambiguous Case: Two Triangles Example Solve the triangle ABC if A = 55.3°, a = 22.8 feet, and b = 24.9 feet. Solution sin A sin B a b sin 55.3 sin B 22.8 24.9 sin B .8978678 B1 63.9 B2 180 63.9 116.1 Copyright © 2011 Pearson Education, Inc. Slide 10.1-14 10.1 Solving the Ambiguous Case: Two Triangles To see if B2 = 116.1° is a valid possibility, add 116.1° to the measure of A: 116.1° + 55.3° = 171.4°. Since this sum is less than 180°, it is a valid triangle. Now separate the triangles into two: AB1C1 and AB2C2. C1 180 A B1 180 55.3 63.9 60.8 a c1 sin A sin C1 22.8 c1 sin 55.3 sin 60.8 c1 24.2 feet Copyright © 2011 Pearson Education, Inc. Slide 10.1-15 10.1 Solving the Ambiguous Case: Two Triangles Now solve for triangle AB2C2. C2 180 A B2 180 55.3 116.1 8.6 a c2 sin A sin C2 22.8 c2 sin 55.3 sin 8.6 c2 4.15 feet Copyright © 2011 Pearson Education, Inc. Slide 10.1-16 10.1 Number of Triangles Satisfying the Ambiguous Case (SSA) Let sides a and b and angle A be given in triangle ABC. (The law of sines can be used to calculate sin B.) 1. If sin B > 1, then no triangle satisfies the given conditions. 2. If sin B = 1, then one triangle satisfies the given conditions and B = 90°. 3. If 0 < sin B < 1, then either one or two triangles satisfy the given conditions (a) If sin B = k, then let B1 = sin-1 k and use B1 for B in the first triangle. (b) Let B2 = 180° – B1. If A + B2 < 180°, then a second triangle exists. In this case, use B2 for B in the second triangle. Copyright © 2011 Pearson Education, Inc. Slide 10.1-17 10.1 Solving the Ambiguous Case: One Triangle Example Solve the triangle ABC, given A = 43.5°, a = 10.7 inches, and c = 7.2 inches. Solution sin C sin 43.5 7.2 10.7 sin C .46319186 C 27.6 The other possible value for C: C = 180° – 27.6° = 152.4°. Add this to A: 152.4° + 43.5° = 195.9° > 180° Therefore, there can be only one triangle. Copyright © 2011 Pearson Education, Inc. Slide 10.1-18 10.1 Solving the Ambiguous Case: One Triangle B 180 27.6 43.5 108.9 b 10.7 sin 108.9 sin 43.5 b 14.7 inches Copyright © 2011 Pearson Education, Inc. Slide 10.1-19