Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Trigonometry Quizzes Quiz #1 Quiz #8 Quiz #15 Quiz #2 Quiz #9 Quiz #16 Quiz #3 Quiz #10 Quiz #17 Quiz #4 Quiz #11 Quiz #18 Quiz #5 Quiz #12 Quiz #19 Quiz #6 Quiz #13 Quiz #20 Quiz #7 Quiz #14 Quiz #21 Menu Definitions of Trigonometric Values of Acute Angles of a Right Triangle • For the triangle at the right … sin cos tan cot sec csc = = = = = = __________ __________ __________ __________ __________ __________ c a b Menu Definitions of Trigonometric Values of Acute Angles of a Right Triangle • For the triangle at the right … sin cos tan cot sec csc = = = = = = a __________ c b __________ c a __________ b b __________ a c __________ b c __________ a c a b Menu Definitions of Trigonometric Values of Acute Angles of a Right Triangle • For the triangle at the right … sin cos tan cot sec csc = = = = = = __________ __________ __________ __________ __________ __________ 26 24 10 Simplify your answers by reducing any fractions! Menu Definitions of Trigonometric Values of Acute Angles of a Right Triangle • For the triangle at the right … sin cos tan cot sec csc = = = = = = 12 __________ 13 5 __________ 13 12 __________ 5 5 __________ 12 13 __________ 5 13 __________ 12 26 24 10 Simplify your answers by reducing any fractions! Menu Trigonometric Values of the Acute Angles of a Right Triangle. Given that cot = 1.5, determine the following: sin = ______ c a cos = ______ tan = ______ sec = ______ b csc = ______ Hint: Let 1.5 = 3/2 and determine the values of a, b, and c in the diagram. Menu Trigonometric Values of the Acute Angles of a Right Triangle. Given that cot = 1.5, determine the following: 2 2 13 3 3 13 13 sin = ______ 13 c a 2 13 cos = ______ 13 13 2 3 tan = ______ 13 sec = ______3 13 b 3 csc = ______2 Hint: Let 1.5 = 3/2 and determine the values of a, b, and c in the diagram. Menu Trigonometric Values of the Acute Angles of a Right Triangle. a=6 sec = 5 b=8 -------------------- c = 10 sin = ______ -------------------- c sin = ______ cos = ______ tan = ______ a cos = ______ tan = ______ cot = ______ csc = ______ b Simplify your answers by reducing any fractions! Menu Trigonometric Values of the Acute Angles of a Right Triangle. a=6 sec = 5 b=8 -------------------2 6 24 5 5 sin = ______ c = 10 1 -------------------- c 3 5 sin = ______ 4 4 tan = ______ 24 2 6 tan = ______ 1 5 cos = ______ 3 a 5 cos = ______ 6 12 24 cot = ______ 5 5 6 12 csc = ______ 24 b Simplify your answers by reducing any fractions! Menu Trigonometric Values of Special Angles Complete the following table. Answers must be exact. sin cos tan 0º 30º 45º 60º 90º Menu Trigonometric Values of Special Angles Complete the following table. Answers must be exact. sin cos 0º 0 1 0 30º 1 3 3 45º 2 60º 3 90º 1 2 2 2 1 2 2 2 2 0 tan 3 1 3 DNE Menu Solve the Following Triangles (Use a calculator and round answers to 1 decimal place.) B A = _________ A = 52° B = _________ B = _________ C = 90° C = 90° c a a = _________ a = 17 b=7 b = _________ c = 10 c = _________ A b C Menu Solve the Following Triangles (Use a calculator and round answers to 1 decimal place.) B 45.6 A = _________ A = 52° 44.4 B = _________ 38 B = _________ C = 90° C = 90° c 7.1 a = _________ a a = 17 b=7 c = 10 A b C 13.3 b = _________ 21.6 c = _________ Menu Give exact answers. No calculators! sin 45 sin 90 cos 30 cos 0 sec 60 csc 30 tan 45 tan 30 cot 45 cot 90 Menu Give exact answers. No calculators! sin 45 2 cos 30 3 sec 60 2 sin 90 1 2 cos 0 1 2 csc 30 2 tan 45 1 tan 30 3 cot 45 1 cot 90 0 3 Menu Smallest Positive Coterminal Angle Angle Reference Angle 582º -260º sin 30 cos 300 tan 30 Menu Angle Smallest Positive Coterminal Angle 582º 222 42 -260º 100 80 Reference Angle sin 30 1 cos 300 1 tan 30 2 2 3 3 Menu Angle Smallest Positive Coterminal Angle Reference Angle 200º -300º sin 45 sin 90 cos 45 cos180 tan 225 tan 270 Menu Angle Smallest Positive Coterminal Angle 200º 200 20 -300º 60 60 sin 45 2 cos 45 2 tan 225 1 Reference Angle 2 sin 90 2 cos180 1 tan 270 DNE 1 Menu Smallest Positive Coterminal Angle Angle Reference Angle 11 3 3 4 Degrees 0º 30º 45º 60º 90º 150º Radians Menu Angle Smallest Positive Coterminal Angle Reference Angle 5 3 3 5 4 4 11 3 3 4 Degrees Radians 0º 30º 45º 60º 90º 0 6 4 3 2 150º 5 6 Menu 1. Find the coterminal angle between 0 and 2 for each of the following: -5/6 8/3 2. Find the reference angle (between 0 and /2) for each of the following: 3/4 5/6 3. Give the following trig values: sin(/6) = cos(3/4) = tan(-/3) = Menu 1. Find the coterminal angle between 0 and 2 for each of the following: 7 -5/6 8/3 2 6 3 2. Find the reference angle (between 0 and /2) for each of the following: 3/4 5/6 4 6 3. Give the following trig values: 1 sin(/6) = 2 cos(3/4) = 2 2 tan(-/3) = 3 Menu 4 sin 3 cos 6 3 tan 4 sec cot 3 13 csc 2 Menu 4 sin 3 3 tan 4 sec 3 1 1 2 cos 6 cot 3 13 csc 2 3 3 2 3 1 Menu sin 3 5 cos 6 11 sin 6 cos sin 4 cos 3 2 5 tan 4 tan tan 6 Menu sin 3 3 11 sin 6 5 cos 6 2 1 cos 2 sin 4 2 2 2 3 5 tan 4 2 tan 0 cos 3 1 0 3 1 2 tan 6 3 Menu Complete the following identities: 1 sin x cos x sin x cos( x) sin( x) tan( x) tan x 2 1 sin 2 x 1 2 sin 2 x cos 2 x sin 2 x cos 2 x sin 2 x Menu Complete the following identities: 1 sin x csc x cos x sin x cos( x) cos x sin( x) cot x sin x tan( x) tan x tan x 2 1 sin 2 x cos 2 x 1 2 sin 2 x cos 2x cos 2 x sin 2 x cos 2x cos 2 x sin 2 x 1 cot x Menu Function Domain Range f(x) = sin-1x g(x) = cos-1x h(x) = tan-1x 1 sin 2 1 cos 2 1 sin 2 tan 1 1 1 1 1 Menu Function Domain f(x) = sin-1x 1, 1 , 2 2 g(x) = cos-1x 1, 1 0, h(x) = tan-1x , 2 , 2 1 sin 2 1 1 cos 2 1 6 1 sin 6 2 1 Range tan 1 1 3 4 Menu 3 sin 2 1 1 sin 2 1 2 sin 2 1 1 3 cos 2 tan 1 1 cos 1 0 tan 1 0 1 1 cos 2 3 tan 3 1 Menu 3 sin 2 1 1 sin 2 1 6 3 5 1 tan 1 cos 6 2 1 3 cos 1 0 2 2 1 1 sin cos 4 3 2 2 1 4 tan 1 0 0 6 3 tan 3 1 Menu 3 arcsin 2 1 arcsin 2 2 arcsin 2 3 arccos 2 arctan 1 arccos 0 arctan 0 1 arccos 2 3 arctan 3 Menu 3 5 3 arctan 1 6 arcsin 3 arccos 4 2 2 1 arcsin 6 2 arccos 0 2 arctan 0 0 6 2 3 1 4 arccos 3 arctan arcsin 2 3 2 Menu 1. State ONE of the Pythagorean identities. 2. State ONE of the double angle identities. 3. State ONE of the sum/difference identities. 4. Evaluate the following (exact answers without a calculator): a. sin (7/6) = b. arctan (-1) = c. cos -1(-1/2) = 5. Evaluate the following (use a calculator and round to 2 decimal places): a. csc (1.8) = b. cot -1(5) = c. arcsec (0.3) = Menu 1. State ONE of the Pythagorean identities. cos 2 x sin 2 x 1 2. State ONE of the double angle identities. cos(2 x) cos2 x sin 2 x 3. State ONE of the sum/difference identities. cos(a b) cos a cos b sin a sin b 4. Evaluate the following (exact answers without a calculator): 1 a. sin (7/6) = 2 b. arctan (-1) = 4 c. cos -1(-1/2) = 2 3 5. Evaluate the following (use a calculator and round to 2 decimal places): a. csc (1.8) = 1.03 b. cot -1(5) = 0.20 c. arcsec (0.3) = DNE Menu sin 1 0 tan 1 3 1 1 cos 0 sin (sin( 0.25)) 1 1 tan 0 cos(cos 2) 3 sin 2 cos sin 4 2 cos 2 1 1 sin cos 7 1 1 1 Menu sin 1 0 1 cos 0 1 tan 0 3 3 sin (sin( 0.25)) 0.25 2 1 cos(cos 2) DNE 0 3 cos sin 4 4 1 3 2 3 4 cos 2 1 1 1 3 sin 2 1 tan 0 1 1 48 4 3 7 sin cos 7 7 Menu sin 1 1 1 1 1 cos tan 1 2 sin 2 1 3 cos 2 1 tan 1 3 1 tan (tan( 0.5)) sin(sin 1 3) cos sin 4 1 1 3 cos sin 5 Menu sin 1 1 1 1 1 cos tan 1 2 2 sin 2 1 3 cos 2 1 tan 1 3 3 1 tan (tan( 0.5)) sin(sin 4 1 3) 0.5 DNE cos sin 4 1 4 6 1 3 cos sin 5 4 4 5 Menu Determine the Polar coordinates for the point (-5, 200º) that satisfies the following criteria: r > 0 & 0º < < 360º (___, ___º) r < 0 & -360º < < 0º (___, ___º) Convert from Polar to Cartesian: (0, 120º) = (___, ___) (7, -45º) = (___, ___) r = 3sin - 4cos __________________ Convert from Cartesian to Polar: (0, 12) = (___, ___º) (7, -7) = (___, ___º) 2xy = 1 __________________ Menu Determine the Polar coordinates for the point (-5, 200º) that satisfies the following criteria: r > 0 & 0º < < 360º (___, ___º) r < 0 & -360º < < 0º (___, ___º) Convert from Polar to Cartesian: (0, 120º) = (___, ___) (7, -45º) = (___, ___) r = 3sin - 4cos 5, 20 5, 160 0, 0 7 2 , 7 2 2 2 __________________ x2 y 2 3 y 4 x Convert from Cartesian to Polar: (0, 12) = (___, ___º) (7, -7) = (___, ___º) 2xy = 1 12, 0 7, 45 7, 315 __________________ r csc(2 ) Menu