Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Double-Angle and Half-Angle Formulas Dr .Hayk Melikyan Departmen of Mathematics and CS [email protected] H.Melikyan/1200 1 Double-Angle Identities sin2 = 2 sin cos cos2 = cos2 – sin2 = 1 – 2sin2 = 2cos2 – 1 tan 2 = H.Melikyan/1200 2tan 1 tan 2 2 Three Forms of the Double-Angle Formula for cos2 cos 2 cos sin 2 2 cos 2 2 cos 1 2 cos 2 1 2 sin 2 H.Melikyan/1200 3 Power-Reducing Formulas 1 cos 2 sin 2 1 cos 2 2 cos 2 1 cos 2 2 tan 1 cos 2 2 H.Melikyan/1200 4 Example Write an equivalent expression for sin4x that does not contain powers of trigonometric functions greater than 1. Solution 1 cos 2 x 1 cos 2 x sin 4 x sin 2 x sin 2 x 2 2 1 cos 2 x 1 2 cos 2 x 2 1 2 cos 2 x cos 2 x 2 4 4 2 4 cos 2 x 1 cos 2 x 3 3 cos 2 x 8 8 H.Melikyan/1200 5 Half-Angle Identities x sin 2 = ± 1 – cos x 2 x cos 2 = ± 1 + cos x 2 x tan 2 = ± 1 – cos x sin x 1 – cos x = = 1 + cos x 1 + cos x sin x x where the sign is determined by the quadrant in which 2 lies. H.Melikyan/1200 6 Text Example Find the exact value of cos 112.5°. Solution Because 112.5° 225°/2, we use the halfangle formula for cos /2 with 225°. What sign should we use when we apply the formula? Because 112.5° lies in quadrant II, where only the sine and cosecant are positive, cos 112.5° < 0. Thus, we use the sign in the halfangle formula. 225 cos112.5 cos 2 2 1 1 cos 225 2 2 2 H.Melikyan/1200 2 2 2 2 4 2 7 Half-Angle Formulas for: 1 cos tan 2 sin sin tan 2 1 cos H.Melikyan/1200 8 Verifying a Trigonometric Identity Verify the identity: x x tan cot 2csc x 2 2 sin x sin x 2csc x 1 cos x 1 cos x sin x(1 cos x) sin x(1 cos x) 2csc x (1 cos x)(1 cos x) (1 cos x)(1 cos x) 2sin x 2csc x 2 1 cos x 2sin x 2csc x 2 sin x 1 2 2csc x sin x H.Melikyan/1200 9 The Half-Angle Formulas for Tangent 1 cos tan Quadrant I or III 1 cos 2 1 cos tan Quadrant II or IV 1 cos 2 1 cos tan in any quadrant sin 2 sin tan in any quadrant 2 1 cos H.Melikyan/1200 10 Example Verify the following identity: (sin cos ) 2 1 sin 2 Solution (sin cos ) 2 sin 2 2 sin cos cos 2 1 cos 2 1 cos 2 2 sin cos 2 2 2 2 sin cos 1 sin 2 2 H.Melikyan/1200 11 Product-to-Sum and Sum-to-Product Formulas Product-to-Sum Formulas 1 sin sin cos( ) cos( ) 2 1 cos cos cos( ) cos( ) 2 1 sin cos sin( ) sin( ) 2 1 cos sin sin( ) sin( ) 2 H.Melikyan/1200 12 Example Express the following product as a sum or difference: cos 3x cos 2x Solution 1 cos cos cos( ) cos( ) 2 cos 3x cos 2 x 1 cos(3x 2 x) cos(3x 2 x) 2 1 cos( x) cos(5 x) 2 H.Melikyan/1200 13 Text Example Express each of the following products as a sum or difference. a. sin 8x sin 3x b. sin 4x cos x Solution The product-to-sum formula that we are using is shown in each of the voice balloons. sin sin = 1/2 [cos( - ) - cos( + )] a. sin 8x sin 3x 1/2[cos (8x 3x) cos(8x 3x)] 1/2(cos 5x cos 11x) b. sin cos = 1/2[sin( + ) + sin( - )] sin 4x cos x 1/2[sin (4x x) sin(4x x)] 1/2(sin 5x sin 3x) H.Melikyan/1200 14 Evaluating the Product of a Trigonometric Expression Determine the exact value of the expression sin cos 1 sin( ) sin( ) 2 3 sin cos 8 8 1 3 3 sin sin 2 8 8 8 8 1 sin sin 2 2 4 1 1 1 2 2 2 1 1 2 1 2 2 2 2 H.Melikyan/1200 15 Sum-to-Product Formulas sin sin 2 sin cos 2 2 sin sin 2 sin cos 2 2 cos cos 2 cos cos 2 2 cos cos 2 sin sin 2 2 H.Melikyan/1200 16 Example Express the difference as a product: sin 4x sin 2x Solution sin sin 2 sin cos 2 2 4x 2x 4x 2x sin 4 x sin 2 x 2 sin cos 2 2 2x 6x 2 sin cos 2 sin x cos 3x 2 2 H.Melikyan/1200 17 Example Express the sum as a product: sin x sin 4x Solution sin sin 2 sin cos 2 2 x 4x x 4x sin x sin 4 x 2 sin cos 2 2 5x 3x 2 sin cos 2 2 H.Melikyan/1200 18 Example Verify the following identity: sin x sin y x y x y tan cot sin x sin y 2 2 Solution x y x y 2 sin cos sin x sin y 2 2 sin x sin y 2 sin x y cos x y 2 2 x y x y sin cos x y x y 2 2 tan cot x y x y 2 2 cos sin 2 2 H.Melikyan/1200 19 Example Express the following as a product and if possible find the exact value. cos750 cos 150 H.Melikyan/1200 20 Example Verify that the following is an identity: sin 3x sin x tan x cos 3x cos x H.Melikyan/1200 21 Equations Involving a Single Trigonometric Function • To solve an equation containing a single trigonometric function: • Isolate the function on one side of the equation. sinx = a (-1 ≤ a ≤ 1 ) cosx = a (-1 ≤ a ≤ 1 ) tan x = a ( for any real a ) • Solve for the variable. H.Melikyan/1200 22 Trigonometric Equations y y = cos x 1 y = 0.5 –4 –2 2 4 x –1 cos x = 0.5 has infinitely many solutions for – < x < y y = cos x 1 0.5 2 –1 H.Melikyan/1200 x cos x = 0.5 has two solutions for 0 < x < 2 23 Text Example Solve the equation: 3 sin x 2 5 sin x 1. Solution The equation contains a single trigonometric function, sin x. Step 1 Isolate the function on one side of the equation. We can solve for sin x by collecting all terms with sin x on the left side, and all the constant terms on the right side. 3 sin x 2 5 sin x 1 3 sin x 5 sin x 2 5 sin x 5 sin x – 1 2 sin x 2 1 2 sin x 1 sin x -1/2 H.Melikyan/1200 This is the given equation. Subtract 5 sin x from both sides. Simplify. Add 2 to both sides. Divide both sides by 2 and solve for sin x. 24 Text Example Solve the equation: 2 cos2 x cos x 1 0, 0 x < 2. Solution The given equation is in quadratic form 2t2 t 1 0 with t cos x. Let us attempt to solve the equation using factoring. 2 cos2 x cos x 1 0 This is the given equation. (2 cos x 1)(cos x 1) 0 2 cos x 1 0 or Factor. Notice that 2t2 + t – 1 factors as (t – 1)(2t + 1). cos x 1 0 2 cos x 1 cos x 1 cos x 1/2 Set each factor equal to 0. Solve for cos x. x x 2 x The solutions in the interval [0, 2) are /3, , and 5/3. H.Melikyan/1200 25 Example Solve the following equation: 7 cos 9 2 cos Solution: H.Melikyan/1200 7 cos 9 2 cos 9 cos 9 cos 1 ,3 ,5 2n 26 Example Solve the equation on the interval [0,2) 3 tan 2 3 Solution: 3 tan 2 3 7 and 2 6 6 7 and 3 3 H.Melikyan/1200 27 Example Solve the equation on the interval [0,2) cos x 2 cos x 3 0 2 Solution: cos 2 x 2 cos x 3 0 (cos x 3)(cos x 1) 0 cos x 3 0 cos x 1 0 cos x 3 cos x 1 no solution x 0 x0 H.Melikyan/1200 28 Example Solve the equation on the interval [0,2) sin 2x sin x Solution: sin 2 x sin x 2 sin x cos x sin x 2 cos x 1 1 cos x 2 5 x , 3 3 H.Melikyan/1200 29