Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Scaling-up Cortical Representations
in Fluctuation-Driven Systems
David W. McLaughlin
Courant Institute & Center for Neural Science
New York University
http://www.cims.nyu.edu/faculty/dmac/
Cold Spring Harbor -- July ‘04
In collaboration with:
David Cai
Louis Tao
Michael Shelley
Aaditya Rangan
Lateral Connections and Orientation -- Tree Shrew
Bosking, Zhang, Schofield & Fitzpatrick
J. Neuroscience, 1997
Coarse-Grained Asymptotic
Representations
Needed for “Scale-up”
Cortical networks have a
very noisy dynamics
• Strong temporal fluctuations
• On synaptic timescale
• Fluctuation driven spiking
Experiment Observation
Fluctuations in Orientation Tuning (Cat data from Ferster’s Lab)
Ref:
Anderson, Lampl, Gillespie, Ferster
Science, 1968-72 (2000)
threshold (-65 mV)
Fluctuation-driven
spiking
(very noisy dynamics,
on the synaptic time scale)
Solid:
average
( over 72 cycles)
Dashed: 10 temporal
trajectories
•
To accurately and efficiently describe these
networks requires that fluctuations be retained in a
coarse-grained representation.
•
“Pdf ” representations –
(v,g; x,t), = E,I
•
•
will retain fluctuations.
But will not be very efficient numerically
Needed – a reduction of the pdf representations
which retains
1. Means &
2. Variances
•
PT #1: Kinetic Theory provides this representation
Ref: Cai, Tao, Shelley & McLaughlin, PNAS, pp 7757-7762 (2004)
First, tile the cortical layer with coarse-grained (CG) patches
Kinetic Theory begins from
PDF representations
(v,g; x,t), = E,I
• Knight & Sirovich;
• Tranchina, Nykamp & Haskell;
• First, replace the 200 neurons in this CG
cell by an effective pdf representation
• Then derive from the pdf rep, kinetic thry
• For convenience of presentation, I’ll sketch
the derivation a single CG cell, with 200
excitatory Integrate & Fire neurons
• The results extend to interacting CG cells
which include inhibition – as well as
“simple” & “complex” cells.
• N excitatory neurons (within one CG cell)
• Random coupling throughout the CG cell;
• AMPA synapses (with time scale )
t vi = -(v – VR) – gi (v-VE)
t gi = - gi + l f (t – tl) +
(Sa/N) l,k (t – tlk)
• N excitatory neurons (within one CG cell)
• All-to-all coupling;
• AMPA synapses (with time scale )
t vi = -(v – VR) – gi (v-VE)
t gi = - gi + l f (t – tl) +
(Sa/N) l,k (t – tlk)
(g,v,t) N-1 i=1,N E{[v – vi(t)] [g – gi(t)]},
Expectation “E” over Poisson spike train
t vi = -(v – VR) – gi (v-VE)
t gi = - gi + l f (t – tl) + (Sa/N) l,k (t – tlk)
Evolution of pdf -- (g,v,t): (i) N>1; (ii) the total input to
each neuron is (modulated) Poisson spike trains.
t = -1v {[(v – VR) + g (v-VE)] } + g {(g/) }
+ 0(t) [(v, g-f/, t) - (v,g,t)]
+ N m(t) [(v, g-Sa/N, t) - (v,g,t)],
0(t) = modulated rate of Poisson spike train from LGN;
m(t) = average firing rate of the neurons in the CG cell
= J(v)(v,g; )|(v= 1) dg,
and where J(v)(v,g; ) = -{[(v – VR) + g (v-VE)] }
Kinetic Theory Begins from Moments
•
•
•
•
(g,v,t)
(g)(g,t) = (g,v,t) dv
(v)(v,t) = (g,v,t) dg
1(v)(v,t) = g (g,tv) dg
where (g,v,t) = (g,tv) (v)(v,t).
t = -1v {[(v – VR) + g (v-VE)] } + g {(g/) }
+ 0(t) [(v, g-f/, t) - (v,g,t)]
+ N m(t) [(v, g-Sa/N, t) - (v,g,t)],
Under the conditions,
N>1; f < 1; 0 f = O(1),
(i) v2(v) = 0;
(ii) 2(v) = g2
2(v) = 2(v) – (1(v))2 ,
And the Closure:
where
g2 = 0(t) f2 /(2) + m(t) (Sa)2 /(2N)
G(t) = 0(t) f + m(t) Sa
One obtains:
t (v) = -1v [(v – VR) (v) + 1(v)(v-VE) (v)]
t 1(v) = - -1[1(v) – G(t)]
+ -1{[(v – VR) + 1(v)(v-VE)] v 1(v)}
+ g2 / ((v)) v [(v-VE) (v)]
Together with a diffusion eq for (g)(g,t):
t (g) = g {[g – G(t)]) (g)} + g2 gg (g)
Fluctuations in g are Gaussian
t (g) = g {[g – G(t)]) (g)} + g2 gg (g)
Fluctuation-Driven Dynamics
PDF of v
Theory→
←I&F (solid)
firing rate (Hz)
N=75
N=75
σ=5msec
S=0.05
f=0.01
Fokker-Planck→
Theory→
←I&F
←Mean-driven limit (
Hard thresholding N
):
Bistability and Hysteresis
Network of Simple, Excitatory only
N=16!
N=16
FluctuationDriven:
Relatively Strong
Cortical Coupling:
MeanDriven:
N
Bistability and Hysteresis
Network of Simple, Excitatory only
N=16!
MeanDriven:
Relatively Strong
Cortical Coupling:
Computational Efficiency
• For statistical accuracy in these CG patch settings,
Kinetic Theory is 103 -- 105 more efficient than I&F;
Average firing rates
Vs
Spike-time statistics
Bursting Model:
With NMDA at all times
Potential (mV)
20
0
19 Spikes
-20
-40
-60
0
50
100
150
Time (ms)
200
250
300
No NMDA when V D >= -50
20
Potential (mV)
16 Spikes
0
-20
-40
-60
0
50
100
150
Time (ms)
200
250
300
• Coarse-grained theories involve local
averaging in both space and time.
• Hence, coarse-grained theories average
out detailed spike timing information.
• Ok for “rate codes”, but if spike-timing
statistics is to be studied, must modify the
coarse-grained approach
PT #2: Embedded point neurons will
capture these statistical firing properties
[Ref: Cai, Tao & McLaughlin, PNAS (to appear)]
• For “scale-up” – computer efficiency
• Yet maintaining statistical firing properties of multiple neurons
• Model especially relevant for biologically distinguished sparse,
strong sub-networks – perhaps such as long-range connections
• Point neurons -- embedded in, and fully interacting with, coarsegrained kinetic theory,
• Or, when kinetic theory accurate by itself, embedded as “test
neurons”
dVi D
Vi D r Gi ED t Vi D E Gi ID t Vi D I ,
dt
dGi ED
S E D
ED
D
i
E
Gi f E t t
dt
NE D
S E DB
p t t '
j
p t t
j
j
jPE D
j
jPE B
dGi ID
S I D
ID
D
i
I
Gi f I t T D
dt
NI
S I DB
p t T '
k
kPI
p t T
k
kPI
k
D
k
B
1, simple
E , I ; simple, complex,
0, complex
Poissonspiketrainst ' j ' , T ' j ' arereconstructed fromtheratemE ' B N E ' B , mI ' B N I ' B .
B
v U v, E B , I B B v
t
v
EB 2 v E
1
B
B
B
B
B
E v U v, E , I
E v
v g EB t B
t
v
E E
v v
IB 2 v I
1
B
B
B
B
B
I v U v, E , I
I v
v g IB t B
t
v
I I
v v
g EB t f E 0 E
B
B
t S E
B
mE
B
t
g IB t f I B 0 I B t S I B mI B t
S E BD
NE
S I BD
NI
D
t
e
D
t
e
t s
E
t s
I
B
v
B
v
p t t ds,
j
jPE D
j
p t t ds
k
k
kPI D
2
2
B
BD
t s
S
S
t
2
E
1 B
E
E
2
B
B
EB t
fE 0E t
mE t
e
p j t t j ds ,
D
2 E
pN E
pN E
jPE D
2
2
B
BD
t s
S
S
t
2
I
1 B
I
I
2
B
B
IB t
fI 0I t
mI t
e
pk t tk ds
D
2 I
pN I
pN I
kPI D
dVi D
Vi D r Gi ED t Vi D E Gi ID t Vi D I ,
dt
dGi ED
S E D
ED
D
i
E
Gi f E t t
dt
NE D
S E DB
p t t '
j
p t t
j
j
jPE D
j
jPE B
dGi ID
S I D
ID
D
i
I
Gi f I t T D
dt
NI
S I DB
p t T '
k
kPI
p t T
k
kPI
k
D
k
B
1, simple
E , I ; simple, complex,
0, complex
Poissonspiketrainst ' j ' , T ' j ' arereconstructed fromtheratemE ' B N E ' B , mI ' B N I ' B .
I&F vs. Embedded Network Spike Rasters
a) I&F Network: 50 “Simple” cells, 50 “Complex” cells. “Simple” cells driven at 10 Hz
b)-d) Embedded I&F Networks: b) 25 “Complex” cells replaced by single kinetic equation;
c) 25 “Simple” cells replaced by single kinetic equation; d) 25 “Simple” and 25 “Complex”
cells replaced by kinetic equations. In all panels, cells 1-50 are “Simple” and cells 51-100
are “Complex”. Rasters shown for 5 stimulus periods.
Embedded Network
Full I & F Network
Raster Plots, Cross-correlation and ISI distributions.
(Upper panels) KT of a neuronal patch with strongly coupled embedded neurons;
(Lower panels) Full I&F Network.
Shown is the sub-network, with neurons 1-6 excitatory; neurons 7-8 inhibitory;
EPSP time constant 3 ms; IPSP time constant 10 ms.
“Test neuron” within a CG Kinetic Theory
ISI distributions for two simulations: (Left) Test Neuron driven by a CG neuronal patch;
(Right) Sample Neuron in the I&F Network.
The Importance of Fluctuations
Cycle-averaged Firing Rate Curves [Shown: Exc Cmplx Pop in a 4
population model): Full I&F network (solid) , Full I&F + KT (dotted);
Full I&F coupled to Full KT but with mean only coupling (dashed).]
In both embedded cases (where the I&F units are coupled to KT),
half the simple cells are represented by Kinetic Theory
Reverse Time Correlations
• Correlates spikes against driving signal
• Triggered by spiking neuron
• Frequently used experimental technique to
get a handle on one description of the system
• P(,) – probability of a grating of orientation
, at a time before a spike
-- or an estimate of the system’s linear
response kernel as a function of (,)
Reverse Correlation
Left: I&F Network of 128 “Simple” and 128
“Complex” cells at pinwheel center. RTC
P() for single Simple cell.
Below: Embedded Network of 128
“Simple” cells, with 128 “Complex” cells
replaced by single kinetic equation. RTC
P() for single Simple cell.
Computational Efficiency
• For statistical accuracy in these CG patch settings,
Kinetic Theory is 103 -- 105 more efficient than I&F;
• The efficiency of the embedded sub-network scales as
N2, where N = # of embedded point neurons;
(i.e. 100 20 yields 10,000 400)
Conclusions
• Kinetic Theory is a numerically efficient, and remarkably accurate,
method for “scale-up” – Ref: PNAS, pp 7757-7762 (2004)
• Kinetic Theory introduces no new free parameters into the model,
and has a large dynamic range from the rapid firing “mean-driven”
regime to a fluctuation driven regime.
• Kinetic Theory does not capture detailed “spike-timing” statistics
• Sub-networks of point neurons can be embedded within kinetic
theory to capture spike timing statistics, with a range from test
neurons to fully interacting sub-networks.
Ref: PNAS, to appear (2004)
Conclusions and Directions
• Constructing ideal network models to discern and extract possible
principles of neuronal computation and functions
Mathematical methods for analytical understanding
Search for signatures of identified mechanisms
• Mean-driven vs. fluctuation-driven kinetic theories
New closure, Fluctuation and correlation effects
Excellent agreement with the full numerical simulations
• Large-scale numerical simulations of structured networks
constrained by anatomy and other physiological observations to
compare with experiments
Structural understanding vs. data modeling
New numerical methods for scale-up --- Kinetic theory
Three Dynamic Regimes of Cortical Amplification:
1) Weak Cortical Amplification
No Bistability/Hysteresis
2) Near Critical Cortical Amplification
3) Strong Cortical Amplification
Bistability/Hysteresis
(2)
(1)
(3)
I&F
Excitatory Cells Shown
Possible Mechanism
for Orientation Tuning of Complex Cells
Regime 2 for far-field/well-tuned Complex Cells
Regime 1 for near-pinwheel/less-tuned
Summed Effects
(2)
(1)
Summary & Conclusion
Summary Points for Coarse-Grained
Reductions needed for Scale-up
1. Neuronal networks are very noisy, with
fluctuation driven effects.
2. Temporal scale-separation emerges from network
activity.
3. Local temporal asynchony needed for the
asymptotic reduction, and it results from synaptic
failure.
4. Cortical maps -- both spatially regular and
spatially random -- tile the cortex; asymptotic
reductions must handle both.
5. Embedded neuron representations may be
needed to capture spike-timing codes and
coincidence detection.
6. PDF representations may be needed to capture
synchronized fluctuations.
Scale-up & Dynamical Issues
for Cortical Modeling of V1
• Temporal emergence of visual perception
• Role of spatial & temporal feedback -- within and
between cortical layers and regions
• Synchrony & asynchrony
• Presence (or absence) and role of oscillations
• Spike-timing vs firing rate codes
• Very noisy, fluctuation driven system
• Emergence of an activity dependent, separation of
time scales
• But often no (or little) temporal scale separation
1
N
v, g E , g I , t E
i v Vi t g E Gi E t g I Gi I t
Under ASSUMPTIONS: 1) N 1 1
2) Summed intra-cortical low rate spike events become Poisson:
g E
v r
v E
v I
g
g
E
I
g g
t
v
E E
I
f
0 E t v, g E E , g I , t v, g E , g I , t
E
f
0 I t v, g E , g I I , t v, g E , g I , t
I
S E
pmE ' t N E ' v, g E
, g I , t v, g E , g I , t
pN E ' E
'
S I
pmI ' t N I ' v, g E , g I
, t v, g E , g I , t
pN I ' I
'
S ' pS '
gI
I
v r
v E
v I
g
g
E
I g
t
v
E
1
2
g
g
t
t
E g
E
E
g E E
E
1
2
g
g
t
t
I
I
I
g I I
g I
gE
E
g I
gI
I
1
2
g
g
t
g
t
g
E
E
E
E
E
g
E
E
1
2
g I
g
g
t
g
t
g
I
I I
I
I
t
g I
g I
I
g E
t
g E
g E t f E 0 E t S E mE ' t ,
g I t f I 0 I t S I mI ' t
'
E 2 t
'
mE ' t
1
2
2
f E 0 E t S E
,
2 E
' pN E '
I 2 t
mI ' t
1 2
2
f I 0 I t S I
2 I
' pN I '
m t J (v, g E , g I , t ) |v VT dg E dg I
0
v r
J v, g E , g I , t
v E
gE
v I
g I v, g E , g I , t
Closures:
E 2 v 0,
v
I 2 v 0
v
and
E 2 v E 2 ,
I 2 v I 2
EI 2 v E 1 v I 1 v
E
n
v 0
dg E dg I g E g E , g I | v , I
n
0
0
0
n
v 0
dg E dg I g I n g E , g I | v
0
EI 2 v dg E dg I g E g I g E , g I | v
E 2 v E 2 v E 1 v ,
2
I 2 v I 2 v I 1 v
2
v U v, E , I v
t
v
E 2 v E
1
E v U v, E , I E v
v g E t v v
t
v
E E
I 2 v I
1
I v U v, E , I I v I v g I t
t
v
I
v v
v r
U v, E , I
g E t f E 0 E t S E mE ' t ,
'
E 2 t
mE ' t
1
2
2
f
t
S
E 0 E E
,
2 E
' pN E '
v E
v
E
v
v
v I
v
I
g I t f I 0 I t S I mI ' t
'
I 2 t
mI ' t
1 2
2
f
t
S
I 0 I I
2 I
' pN I '
v J v 0
t
v
1
1
1
J v v r 2 g E t E E 2 t v E 2 g I t I I 2 t v I v
E E 2 t
I I 2 t
2
2
v
v
E
I v v
2
2
m t J VT
v, , t ,
' ' v, , t
g E , t f E 0 E , t S E ' mE ' ', t d '
'
E
2
mE ' ', t
1
2
2
d '
t
f E 0 E t S E '
2 E
' pN E ' '
B v U v, E B , I B B v
t
v
E B 2 v E
1
B
B
B
B
B
E v U v, E , I
E v
v g E B t B
t
v
E E
v v
I B 2 v I
1
B
B
B
B
B
I v U v, E , I
I v
v g I B t B
t
v
I I
v v
g E B t B f E B 0 E B t S E B mE ' B t S E BD
'
g I B t f I 0 I
B
B
'
t S I mI ' t S
B
B
BD
I
'
N
'
1
I '
1
N E '
t
D
t
e
e
D
t s
I
t s
E
B
v
B
v
p t t ds,
j
'
j
'
jPE 'D
p t t ds
k
'
k
'
kPI 'D
t s
t
2
2
2
mE ' B t
1
1
E
B
B
B
BD
E B t
f
t
S
S
e
p
t
t
ds
E
,
E
0E
E
j '
j '
D
D
2 E
pN
pN
'
'
jPE '
E '
E '
t s
t
2
2
mI ' B t
1 B 2 B
1
I
2
B
BD
I B t
S
e
p
t
t
ds
f I 0 I t S I
I
D k '
k '
D
2 I
pN I '
'
' pN I '
kPI '
2
dVi D
Vi D r Gi E D t Vi D E Gi I D t Vi D I ,
dt
dGi E D
1
E
Gi E D D f E D t t i S E D
D
dt
' N E '
S E DB
p t t '
j
' jPE 'B
'
j
S I DB
p t T '
' kPI ' B
k
'
k
p t t
j
jPE '
'
j
'
D
'
dGi I D
1
I
Gi I D f I D t T i S I D
D
dt
' N I '
p t T
k
'
k
'
kPI 'D
'
1, simple
0, complex
E , I ; simple, complex,
Poissonspiketrainst ' j ' , T ' j ' arereconstructed fromtheratemE ' B N E ' B , mI ' B N I ' B .
Kinetic Theory for Population Dynamics
Population of interacting neurons:
dVi
Vi r Gi t Vi E
dt
dG
S
i Gi f t t i p j t t j
dt
N j
1-p: Synaptic Failure rate
1,with probability p,
p j
0,with probability1 p.
1
N
v, g , t E
v V t g G t
i
i
i
Under ASSUMPTIONS: 1) N 1 1
2) Summed intra-cortical low rate spike events become Poisson:
Kinetic Equation:
v r
v, g
t
v
v E
g
g
v
,
g
v
,
g
g
f
0 t v, g , t v, g , t
S
pm t N v, g
, t v, g , t
pN
m t J (v, g , t ) |v VT dg
0
pS S
v r
v, g
t
v
v E
g
v r
J v, g , t
v r
g
v, g , t
1
2
v
,
g
g
g
t
v
,
g
g
g
g
g t f 0 t Sm t ,
1
g t
2
2
2
S2
m t ,
f 0 t
Np
f , N finite
Fluctuation-Driven Dynamics
Physical Intuition:
Fluctuation-driven/Correlation between g and V
Hierarchy of Conditional Moments
1 v g g | v dg
0
2
v 0
g g | v dg
2
v
2
2
v 1 v
1
g g g t g g 2
g
t
g
g
2
g t f 0 t Sm t ,
1 2
S2
g t
m t
f 0 t
2
pN
f , N : finite
2
v r
v
t
v
v E
1
v
v
v r
1
1
v 1 v g t
t
v v E
v v
v E 1
1
v
v v
2 v E
v
v
v
Closure Assumptions:
2
v 0
v
1 2
S2
g t
m t
f 0 t
2
pN
2
2 v g 2
Closed Equations — Reduced Kinetic Equations:
v r
v
t
v
v r
1
v
t
v E
1
v
v
v E
1
v
g v E
1 1
1
v
v
g
t
v
v v
2
v
Coarse-Graining in Time:
0,
m
1
g 2 v E
g 2 g 2 v E
v g t
v g t
v
v v
v
v
1
g 2 t O 1
Fluctuation Effects
Correlation Effects
Fokker-Planck Equation:
v r
v
t
v
g 2 v E
g t
Flux:
g
v
2
v E
2
v
v
2
1
J v t v t v q 2 v E
v
v
Determination of Firing Rate:
JV VT m t
For a steady state,
m can be determined implicitly
v dv m t
VT
r
ref
1