Download 24. Sequence Learning

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Michael Arbib: CS564 - Brain Theory and Artificial
Intelligence
University of Southern California, Fall 2001
Lecture 24. Sequence Learning
Reading Assignment:
Reprint
Dominey, P.F., Arbib, M.A., and Joseph, J.-P., 1995, A Model
of Corticostriatal Plasticity for Learning Associations and
Sequences, J. Cog. Neurosci., 7:311-336.
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
1
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
2
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
3
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
4
Visual Input
"What"
"Where"
Posterior Parietal Cx
V4
FEF
Inferior
Temporal
Cortex
Noise
Caudate
Modifiable Synapses
SNr
Thalamus (MD)
Reward
Pathways
leading to
DA release
by SNc
Behavior
Superior Colliculus
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
5
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
6
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
7
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
8
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
9
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
10
Visual-Oculomotor Conditional
Learning
(a)
plus local peak
disinhibition
of
yields
from which winner-take-all
selects the
corresponding
target
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
11
But what if target positions are not fixed?
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
12
(b)
plus gradient
disinhibition
of
yields
from which winner-take-all
selects the
rightmost
target
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
13
Visual Input
Prefrontal
Cortex
Posterior Parietal Cx
FEF
Noise
Randomized
trials
Reward
Caudate
SNr
Modifiable Synapses
Simulation
Environment
Behavior
Thalamus (VA-MD)
Superior Colliculus
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
14
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
15
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
16
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
17
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
18
Michael Arbib CS564 - Brain Theory and Artificial Intelligence, USC, Fall 2001. Lecture 24. Sequence Learning
19
Related documents