Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
The Learning Center http://www.rose-hulman.edu/lc Physics I Helpful Physics I Information Constants 0 8.85 10 12 C 2 Nm 2 k 2 1 8.99 10 9 Nm 2 C 4 0 e 1eV q proton 16 . 10 19 C h 6.63 10 34 Js c 3 108 m s m proton 1.67 1027 kg melectron 9.11031kg G 6.67 10 11 N m 2 / kg 2 g 9.81 m/s 2 32.2 ft / s 2 1D, 2D and Rotational Kinematic Equations (constant acceleration projectile motion) x v= t v a= t vf = vo + at dx v= dt dv a= dt x f = x o + v o t + 12 at 2 vf2 = vo2 + 2a(xf - xo) A B A B cos( ) 2r 2 T v A x B A B sin( ) a = r v = r s = r v d ac t 2r r dt 2 Electrostatics and Magnetic Fields 1 q1q 2 F12 4 0 r 2 FE E q E FB q(v x B) 1 q r 4 0 r 2 Forces, Friction and Motion Rules and Equations Newton’s Laws 1. Law of inertia | The total force on an object moving at constant velocity is zero. 2. F = ma | The net force F equals the vector sum of all forces acting on the object of mass m. 3. FAB = -FBA | If A exerts a force on B, then B exerts an equal and opposite force on A. f N Fs kx 1 D CAv 2 2 vt 2mg CA mv 2 Fc r FG ma mb r2 Energy, Work and Power xf 1 K mv 2 2 W= -U =K= F ( x )dx xO Wapp Eint f k d Us Ws U 12 kx 2 P 1 2 kx 2 W t U E=K+U P dE dt GMm r Ug=mgy F ( x) dU ( x ) dx Etot K U Eint 0 Kf + Uf = Ko + Uo Center of Mass and Conservation of Momentum xcm m x mb xb a a ma mb 1 rcm M n m r i 1 F i i p = mv ext Macm p initial = p final Impulse and Collisions J p t f J F (t )dt tO J np J n F p t t The Learning Center http://www.rose-hulman.edu/lc Physics II Helpful Physics II Information Constants 0 8.85 10 12 C 2 Nm k 2 e q proton 16 . 10 19 C mc 2.43 10 h 6.63 10 34 Js 12 c 3 108 m s . 10 27 kg melectron 9.1 10 31 kg mproton 167 1eV 16 . 1019 J h 2 1 8.99 10 9 Nm 2 C 4 0 h 2 m A B ABcos() A x B ABsin() Chapter 9, Rotation of Rigid Bodies and Chapter 10, Dynamics of Rotational Motion d v t dt r s r I mi ri 2 I r 2 dm I cm vt2 d d 2 a t 2 ac 2r dt r r dt 2 r F I Mh f W d KE i dW d dt dt 1 1 KE I cm 2 mvcm 2 2 2 1 0 0 t t 2 2 P 2 0 2 2 ( 0 ) L I Chapter 21, Sound and Hearing T 1 f 2 k m 2 U l g x(t ) A cos(t ) kx 2 2 Chapter 20, Wave Interference and Normal Modes 2 km T y( x, t ) ym sin( kx t ) k 2 2 T f k T fL 2 n Chapter 22, Electric Charge and Electric Field and Chapter 23, Gauss’s Law F 1 q 1 p E 2 q 4 0 r 2 0 z 3 F 0 E conductor surface q E dA enclosed 1 q q' 4 0 r 2 E line ch arg e 0 2 0 r E sheet ch arg e 2 0 Chapter 24, Electric Potential (Voltage) W 1 q 1 p cos V E ds q 4 0 r 4 0 r 2 i 1 qq ' U W 4 0 r f Es V s Chapter 25, Capacitance and Dielectrics q CV C q 0 A V d n 1 C parallel C j Cseries j 1 n 1 j 1 C j 0 Chapter 26, Electric Current and Chapter 27, Circuits dq EMF t RC i e dt R dW EMF iR dq V iR n 1 j 1 R parallel Rseries R j charging capacitor: q C EMF 1 e t RC V2 P iV i R R n 1 j 1 R j 2 discharging capacitor: q q0 e t RC Chapter 40, Photons, Electrons, and Atoms, Chapter 41, The Wave Nature of Particles, and Chapter 43, Atomic Structure E hf Kmax h2 2 me 4 1 En n 3 20 h 2 n 2 8mL2 p hf h c h 1 cos mc L l (l 1) x, ps The Learning Center http://www.rose-hulman.edu/lc Physics III Helpful Physics III Information Constants 0 8.85 10 12 F m h 6.63 10 34 Js 0 4 10 7 Tm A e q proton 16 . 10 19 C Magnetic Fields (chapter 28) FB qm B F q ( E v B) FE qE R T m proton 17 . 10 27 kg melectron 9.1 10 31 kg n glass 150 . nwater 1333 . nair 1000293 . c 3 108 m s near point 25.0 cm vs E B Ek qV 12 mq v 2 mv qB 2m qB V vd H hB U B B n IB qwVH Source of Magnetic Fields (chapter 29) f 0 I (dl r) I Bp 0 dB 4 r 2 2 r 0 B dl 0 I enclosed circular loop: Bx 0 IR 2 3 2( x 2 R 2 ) 2 0 I infinitely long wires: Boutside 2 r B B dA 0 center of loop: FB I (l B) NIAn F21 I Bp 0 2R Binside 0 Ir 2 a 2 B B 0 I1 I 2 l 2d far from loop: solenoid: Faraday’s Law and Induction (chapter 30) d E ( BLv ) 2 I BLv R P Einduced = IR I displacement 0 R dt 0 IR 2 Bp 2x3 IN B 0 l I enclosed I net I displacement Maxwell’s Equations Gauss’s Law for m E: B dA 0 q E E dA enclosed 0 Gauss’s Law for B: 4 d d B Einduced = E dl = - B dA dt dt d E B dl 0 I net 0 dt Faraday’s Law: Inductance (chapter 31) dI L B E= - L I dt 2 LI B2 uB U 2 2 0 I (t ) Electromagnetic Waves (chapter 33) E E0 1 E rms 0 c B0 2 0 0 EB S 0 P P I A 4 r 2 2I reflection): Pr c momentum: U p c Ampere’s Law (modified): t E (1 e L ) R I (t ) I 0 e t L B2 uT 0 E 0 I 2 F pressure: P A E t L (e ) R (complete absorption): E 0 B0 S 2 0 Pr I c (perfect The Nature and Propagation of Light (chapter 34) 1 n1 Snell’s Law: n sin i ns sin t c sin n cv 0 i r n2 ncore ncladding ncore 2 2 NA sin ncore ncladding Law: Brewster’s Law: n p tan 1 2 n 1 I I 0 cos2 Geometrical (Paraxial) Optics (chapter 35) paraxial approximation: sin tan 1 1 1 o i f ni mag 1 1 n2 o spherical mirrors: plane mirrors: M lateral hi i ho o oi M lateral plane lenses: hi ho n1 n2 0 o i Malus’ curved lenses: n0 n1 n1 n0 o i R M lateral hi ni 0 ho n1o refracting element: 1 1 1 (n 1) R1 R2 f 25cm h' h M optical microscope: tan f L f0 L 25cm M mobjective meyepiece f objective f eyepiece h' h' optical telescope: mobjective meyepiece f objective f eyepiece mag mobjective meyepiece f objective f eyepiece Interference of Light (chapter 37) E net E1 E2 Young’s double slit: ym L tan m 2 r path difference r d sin m m rm2 rm2 2 Newton’s rings: R (2nt ) (add from low n to high n) 0 2d m Diffraction of Light (chapter 38) y a2 a sin 2 I total I max sinc 2 (screen in focal plane of tan ; L 2 L y lens): tan f 2 a I I max sinc 2 cos2 irradiance minima: a sin m 122 . sin 2 2 a 2d sin thin film interference: