Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Observing Possibilities in Europe Medium-sized telescopes (2 - 4m class) • optical & NIR instrumentation • observing techniques VLT, GTC, LBT radio & mm (IRAM, APEX, ALMA) solar telescopes • why still needed OPTICON – COMET transnational access programme – Pays your travel costs 1 OPTICON 2 OPTICON 3 OPTICON OPTICON • • • • • Co-ordination network of European optical and infrared astronomy Astronomy institutes and infrastructure operators Access, Networks, JRAs, 19.2 M€ COMET transnational access programme International access to national observatories EC Framework Programmes (FP6) • • • • Support international collaborations Lissabon Strategy: build the European Research Area (ERA) Integrated Infrastructure Initiatives (I3) European Research Council in FP7 4 COMET COMET • • • • Transnational access programme European medium-sized (2-4m class) telescopes La Silla, Hawaii, AAT, WHT, TNG, CAHA 5 – 10% pool of observing time Short term benefits • International users: – telescope access – travel & subsistence • Training (NEON summer schools) • Telescope directors forum Medium term • Full co-operation, complementary instrumentation 5 INSTRUMENTS 6 Instruments & observing techniques General instrumentation (brief) • NIR and TIR instruments MOS and IFUs • integral field spectroscopy Survey Instruments • optical & NIR wide-field imagers, surveys, s Ori High-resolution spectrographs • high precision radial velocity determination – extrasolar planets, ways of detection Adaptive Optics • wavefront sensing 7 Work horse instrumentation, optical imaging/low resolution spectroscopy • TNG/DOLORES • NTT/EMMI • 3.6m/EFOSC2 • CAHA/MOSCA long slit, medium resolution spectroscopy, blue/red arm • WHT/ISIS • NTT/EMMI • CAHA/TWIN check OPTICON web pages 8 NIR and TIR Spectrographs 9 NIR spectrographs UKIRT • CGS4, UIST NTT • SOFI WHT • LIRIS CAHA • OmegaCass – imaging – low/medium resolution spectroscopy, R = 100 – 3000 10 – polarimetry UKIRT CGS4 • 1 – 5 mu, R= 400 – 40.000 UIST • 1 – 5 mu, 1k InSb array, 0.06‘‘ and 0.12‘‘/px • Imaging, long-slit, IFU Michelle (now Gemini) • SBRC 320 x 240 Si:As • 10 – 20 mu imaging, 90‘‘ long-slit • R up to 30.000 11 Thermal infrared La Silla 3.6m • TIMMI2 – 3.5 – 28 mm, 320 x 240 Si:As, R=160 – imaging, spectroscopy, polarimetry 12 La Silla 13 MOS & IFUs 14 15 16 MOS and IFUs AAT Two Degree Field: 2dF • wide field multi-object spectroscopy Integral/WYFFOS • MOS in WHT prime focus with robotic fibre positioner • 150 fibres, 2 CCD mosaic PMAS • optical IFU, wide field SAURON (private) • IFU with lenslet array OASIS/NAOMI • 0.6 – 1 mm 17 AAT 3.9m AAO • 2dF 2 degree field • 2 spectrographs with 200 fibres each • automatic fibre positioner • 5/03 relaease of 2dF Galaxy & Quasar Survey 18 Calar Alto/PMAS PMAS • • • • • • – IFU with nod & shuffle 16x16 pixel lenslet array with 8´´x8´´ or 16‘‘ x 16‘‘ PPAK hexagonal fibre bundle 75‘‘ plus sky 0.35, 0.8, 1.7 A/px gratings PYTHEAS, scanning FP with R = 100.000 Euro3D MUSE (VLT 2012) 19 SURVEY INSTRUMENTS 20 Survey Instruments UKIRT • CFHT • MEGACAM, CFHTLS CAHA • • WFCAM, UKIDSS Omega2000 LAICA Paranal • • 4m VISTA, 1 square degree 2.5m VST, 16k x 16k OmegaCam, 1 sqd. 21 UKIRT WFCAM • four 2k x 2k Hawaii II • 0.8 - 2.5 mm 0.‘‘4 pixel scale – UKIRT Deep Sky Survey (UKIDSS) – Sep 2004, 7500 sqd to K=18.5 mag – 3 mag deeper than 2MASS • • • • • NIR counterpart of SLOAN Coolest and nearest BDs High redshift starburst galaxies Galaxy clusters at 1 < z < 2 High redshift quasars at z > 7 22 CFHT MegaPrime/MegaCam • 40 2k x 4k CCDs, 0.‘‘187 pixel – Legacy Survey 23 CFHTLS CFHT Legacy Survey • 50% of dark/grey time • 450 nights over 5 years – Very wide, shallow • 1300 square degrees • TNOs, stellar populations, Galactic structure – Wide • i‘ = 24.5 mag, 50-70 sqd, cosmology, large scale distribution – Deep • 4 sqd, r‘ = 28 mag, 2000 type Ia SN monitoring 24 CAHA OMEGA2000 • Prime focus, 2k x 2k Hawaii II, 16´ x 16´ FOV LAICA • 4 4k x 4k CCDs, 1 sqare degree FOV – 30% of time used for LBT and GTC preps – ALHAMBRA, HIROCS, MANOS 25 Scientific results: s Ori Brown Dwarfs and Free Floating Planets in Orion Rebolo: s Ori 26 Extrasolar Planets Free Floating Planets?? What about real planets? 1995: 51 Peg May 04: 122 planets around solar type stars • 107 planet systems • 13 systems with > 1 planets • Jovian planets, 0.1 – 5 MJupiter How detected? 27 ESP Detection: radial velocities 28 OHP/ELODIE 51 Peg B: first extrasolar planet • ELODIE: spectral resolution about 6 km s-1 • RV modulation: amplitude 50 m s-1 • How possible? • Iodine Cell or ThAr superposition • MM & DQ 29 HIGH – R SPECTROGRAPHS 30 High resolution spectrographs UHRF • 1 Million HARPS • cross dispersed • 3.6m, fibre fed, ThAr Superposition • ELODIE SARG • TNG, up to R = 164.000, Iodine Cell CES/VLC • long slit • 3.6m, fibre fed, R = 235.000, Iodine Cell 31 OHP/ELODIE 1.93m telescope – Elodie • Echelle Spectrograph • 1k TK detector • R=45.000 • 2850 - 6800 coverage • first extrasolar planet discovered 32 Iodine Cell Iodine: forest of narrow lines Place Iodine cell in spectrograph Obtain composite Iodine/Stellar spectrum 33 Very accurate radial velocities Iodine Cell • full modelling of composite spectrum required • simultaneous model of instrumental profile • developed by M. Endl, AUSTRAL sw • accuracies down to 1 m s-1 ThAr superposition • HARPS • Correlation technique 34 La Silla: HARPS HARPS • high accuracy radial velocity planet finder • fibre fed, cross dispersed echelle spectrometer • 0.005o C temperature stabilisation • R = 120.000 or about 3 km s-1 • ThAr superposition: precision to 1m s-1 • 1/1000 pixel 35 TNG SARG: HD 219542 • Period: 111.8 days • velocity semi – amplitude: 13 m/s • Eccentricity: ~ 0.3 • Planet mass: 0.30 Mjupiter (~ 1 Msaturn) • Orbital semiaxis: 0.46 AU 36 AAT UHRF UHRF • 31.6 lines/mm 200 x 400 mm echelle • R = 300.000 – 1.000.000 • 1 – 0.3 km s-1 • wavelength coverage 4A (300nm) – 13A (1100nm) • interstellar line studies 37 Detection of extrasolar planets Radial velocities Transits – June 8th Venus Transit – HD 209458 – CAHA: 0.5m robotic telescope – OGLE experiment Las Campanas – giant planets, Jupiter – COROT, Kepler – terrestrial planets Direct detection – adaptive optics – differential methods, CHEOPS, nulling interferometry 38 ESP: Direct Detection High angular resolution • 60 light years, 5AU (Jupiter): 0.“25 • 3.5m, K-band: diffraction limit 0.‘‘13 – Adaptive Optics – AO principles, wavefront sensing – LGS Problems – 109 difference in brightness in visual, Zodiacal light • differential polarimetry: CHEOPS • Nulling interferometry: LBT, DARWIN 39 ACTIVE & ADAPTIVE OPTICS 40 Adaptive Optics ADONIS (decommissioned): first steps PUEO: most productive ALFA • LGS development • PARSEC for VLT • Pyramid wavefront sensors NAOMI • GLAS Rayleigh laser • INGRID • OASIS, from CFHT • 0.6 – 1mm 41 Active optics Archimedes destruction of the Roman fleet, Syracruse • Active optics: control shape of primary mirror • • • • Second punic war, 219BC – 210 BC Large, thin mirrors (VLT) Static aberrations from M1 M2 de-centering coma: correct M2 position One step further: tip-tilt secondary mirrors: UKIRT 3.5m New Technology Telescope on La Silla • • • Active control of shape of M1 75 actuators, 3 fixed points, 24 lateral actuators 0.05 Hz correction frequency: slow 42 Adaptive Optics Correct wavefront • • • • Deformable mirror, fast Small mirrors, after telescope optics Phase conjugation AO secondaries (MMT, LBT) • Requirements: 1/50 mm, 103 Hz Determine shape of wavefront • • • Use science object, NGS, LGS Wavefront sensor: Shack-Hartmann, curvature, pyramids Analytic representation of WF: Zernike polynomials 43 AO, routine performance K-band seeing of 0.´´8 • • • Seeing disk, no tip-tilt, no AO Tip-tilt corrections: resolution 0.´´4 Tip-tilt and AO: resolution 0.´´13 44 AO: possibilities from the ground 45 Wavefront sensing Shack-Hartmann sensor • • • Lenslet array, sub-pupils Measure slope of wavefront at different positions Reconstruction of wavefront from array of slopes 46 Wavefront sensing 47 Wavefront sensing Curvature sensing • Intra- and extrafocal images 2 2 I1 (r ) - I 2 (r ) lF ( F - l ) Fr F r 2 2 c - 2 2 I1 ( r ) I 2 ( r ) 2l n l x y l 48 Wavefront sensing Pyramid wavefront sensor • • 4 sub-pupils Sub-apertures defined by detector pixels 49 Wavefront sensing Shearing interferometer • • Neural networks • Interfering beams represent wave-fronts with small lateral shift r Obtain wavefront tilt in shear direction Experienced opticians can recognise dominant types of aberrations from pupil images Phase diversity • Retrieval of phase error from focused and de-focused image of a star 50 ALFA 51 Laser guide stars 52 WHT/GLAS 53 ESP future projects VLT • Kepler • • • • CHEOPS 1m Telescope 42 2x1k Detectors about 900 planets with 1 – 2 REarth > 10% of planetary systems with > 1 planets LBT and DARWIN/TPF • direct detection: nulling interferometry 54 Terra Nova: Space 55 Cancri G8V M55 Cancri = 0.85 MSonne T = 5250 K 55 Summary European 2 – 4m class opt/NIR telescopes • wide range of competitive instrumentation • transnational access programme Science • very interesting science per se – extrasolar planets • support/preparation of 10m class – surveys, PMAS MUSE • development of new instrumentation – ALFA/LGS PARSEC medium sized telescopes are still needed 56