Download opticon

Document related concepts
no text concepts found
Transcript
Observing Possibilities in Europe
 Medium-sized telescopes (2 - 4m class)
• optical & NIR instrumentation
• observing techniques
VLT, GTC, LBT
radio & mm (IRAM, APEX, ALMA)
solar telescopes
• why still needed

OPTICON
– COMET transnational access programme
– Pays your travel costs
1
OPTICON
2
OPTICON
3
OPTICON

OPTICON
•
•
•
•
•

Co-ordination network of European optical and infrared
astronomy
Astronomy institutes and infrastructure operators
Access, Networks, JRAs, 19.2 M€
COMET transnational access programme
International access to national observatories
EC Framework Programmes (FP6)
•
•
•
•
Support international collaborations
Lissabon Strategy: build the
European Research Area (ERA)
Integrated Infrastructure Initiatives (I3)
European Research Council in FP7
4
COMET

COMET
•
•
•
•

Transnational access programme
European medium-sized (2-4m class) telescopes
La Silla, Hawaii, AAT, WHT, TNG, CAHA
5 – 10% pool of observing time
Short term benefits
• International users:
– telescope access
– travel & subsistence
• Training (NEON summer schools)
• Telescope directors forum

Medium term
• Full co-operation, complementary instrumentation
5
INSTRUMENTS
6
Instruments & observing techniques

General instrumentation (brief)
• NIR and TIR instruments

MOS and IFUs
• integral field spectroscopy

Survey Instruments
• optical & NIR wide-field imagers, surveys, s Ori

High-resolution spectrographs
• high precision radial velocity determination
– extrasolar planets, ways of detection
 Adaptive
Optics
• wavefront sensing
7
Work horse instrumentation, optical

imaging/low resolution spectroscopy
• TNG/DOLORES
• NTT/EMMI
• 3.6m/EFOSC2
• CAHA/MOSCA

long slit, medium resolution spectroscopy, blue/red arm
• WHT/ISIS
• NTT/EMMI
• CAHA/TWIN

check OPTICON web pages
8
NIR and TIR
Spectrographs
9
NIR spectrographs

UKIRT
• CGS4, UIST

NTT
• SOFI
 WHT
• LIRIS

CAHA
• OmegaCass
– imaging
– low/medium resolution spectroscopy, R = 100 – 3000
10
– polarimetry
UKIRT

CGS4
• 1 – 5 mu, R= 400 – 40.000

UIST
• 1 – 5 mu, 1k InSb array, 0.06‘‘ and 0.12‘‘/px
• Imaging, long-slit, IFU

Michelle (now Gemini)
• SBRC 320 x 240 Si:As
• 10 – 20 mu imaging, 90‘‘ long-slit
• R up to 30.000
11
Thermal infrared

La Silla 3.6m
• TIMMI2
– 3.5 – 28 mm, 320 x 240 Si:As, R=160
– imaging, spectroscopy, polarimetry
12
La Silla
13
MOS & IFUs
14
15
16
MOS and IFUs
 AAT Two
Degree Field: 2dF
• wide field multi-object spectroscopy

Integral/WYFFOS
• MOS in WHT prime focus with robotic fibre positioner
• 150 fibres, 2 CCD mosaic

PMAS
• optical IFU, wide field

SAURON (private)
• IFU with lenslet array

OASIS/NAOMI
• 0.6 – 1 mm
17
AAT

3.9m AAO
• 2dF 2 degree field
• 2 spectrographs with 200 fibres each
• automatic fibre positioner
• 5/03 relaease of 2dF Galaxy & Quasar Survey
18
Calar Alto/PMAS

PMAS
•
•
•
•
•
•
–
IFU with nod & shuffle
16x16 pixel lenslet array with 8´´x8´´ or 16‘‘ x 16‘‘
PPAK hexagonal fibre bundle 75‘‘ plus sky
0.35, 0.8, 1.7 A/px gratings
PYTHEAS, scanning FP with R = 100.000
Euro3D
MUSE (VLT 2012)
19
SURVEY
INSTRUMENTS
20
Survey Instruments

UKIRT
•

CFHT
•

MEGACAM, CFHTLS
CAHA
•
•

WFCAM, UKIDSS
Omega2000
LAICA
Paranal
•
•
4m VISTA, 1 square degree
2.5m VST, 16k x 16k OmegaCam, 1 sqd.
21
UKIRT

WFCAM
• four 2k x 2k Hawaii II
• 0.8 - 2.5 mm 0.‘‘4 pixel scale
– UKIRT Deep Sky Survey (UKIDSS)
– Sep 2004, 7500 sqd to K=18.5 mag
– 3 mag deeper than 2MASS
•
•
•
•
•
NIR counterpart of SLOAN
Coolest and nearest BDs
High redshift starburst galaxies
Galaxy clusters at 1 < z < 2
High redshift quasars at z > 7
22
CFHT

MegaPrime/MegaCam
• 40 2k x 4k CCDs, 0.‘‘187 pixel
– Legacy Survey
23
CFHTLS

CFHT Legacy Survey
• 50% of dark/grey time
• 450 nights over 5 years
– Very wide, shallow
• 1300 square degrees
• TNOs, stellar populations, Galactic structure
– Wide
• i‘ = 24.5 mag, 50-70 sqd, cosmology, large scale distribution
– Deep
• 4 sqd, r‘ = 28 mag, 2000 type Ia SN monitoring
24
CAHA


OMEGA2000
• Prime focus, 2k x 2k Hawaii II, 16´ x 16´ FOV
LAICA
• 4 4k x 4k CCDs, 1 sqare degree FOV
–
30% of time used for LBT and GTC preps
–
ALHAMBRA, HIROCS, MANOS
25
Scientific results: s Ori

Brown Dwarfs and Free Floating Planets in Orion
 Rebolo: s Ori
26
Extrasolar Planets

Free Floating Planets??
 What about real planets?
 1995: 51 Peg
 May 04: 122 planets around solar type stars
• 107 planet systems
• 13 systems with > 1 planets
• Jovian planets, 0.1 – 5 MJupiter

How detected?
27
ESP Detection: radial velocities
28
OHP/ELODIE

51 Peg B: first extrasolar planet
• ELODIE: spectral resolution about 6 km s-1
• RV modulation: amplitude 50 m s-1
• How possible?
• Iodine Cell or ThAr superposition
• MM & DQ
29
HIGH – R
SPECTROGRAPHS
30
High resolution spectrographs

UHRF
• 1 Million

HARPS
• cross dispersed
• 3.6m, fibre fed, ThAr Superposition
• ELODIE

SARG
• TNG, up to R = 164.000, Iodine Cell

CES/VLC
• long slit
• 3.6m, fibre fed, R = 235.000, Iodine Cell
31
OHP/ELODIE

1.93m telescope
– Elodie
• Echelle Spectrograph
• 1k TK detector
• R=45.000
• 2850 - 6800 coverage
• first extrasolar planet discovered
32
Iodine Cell

Iodine: forest of narrow lines
 Place Iodine cell in spectrograph
 Obtain composite Iodine/Stellar spectrum
33
Very accurate radial velocities

Iodine Cell
• full modelling of composite spectrum required
• simultaneous model of instrumental profile
• developed by M. Endl, AUSTRAL sw
• accuracies down to 1 m s-1
 ThAr
superposition
• HARPS
• Correlation technique
34
La Silla: HARPS

HARPS
• high accuracy radial velocity planet finder
• fibre fed, cross dispersed echelle spectrometer
• 0.005o C temperature stabilisation
• R = 120.000 or about 3 km s-1
• ThAr superposition: precision to 1m s-1
• 1/1000 pixel
35
TNG
SARG: HD 219542
• Period: 111.8 days
• velocity semi – amplitude: 13 m/s
• Eccentricity: ~ 0.3
• Planet mass: 0.30 Mjupiter (~ 1 Msaturn)
• Orbital semiaxis: 0.46 AU
36
AAT UHRF

UHRF
• 31.6 lines/mm 200 x 400 mm echelle
• R = 300.000 – 1.000.000
• 1 – 0.3 km s-1
• wavelength coverage 4A (300nm) – 13A (1100nm)
• interstellar line studies
37
Detection of extrasolar planets

Radial velocities
 Transits
– June 8th Venus Transit
– HD 209458
– CAHA: 0.5m robotic telescope
– OGLE experiment Las Campanas
– giant planets, Jupiter
– COROT, Kepler
– terrestrial planets

Direct detection
– adaptive optics
– differential methods, CHEOPS, nulling interferometry
38
ESP: Direct Detection

High angular resolution
• 60 light years, 5AU (Jupiter): 0.“25
• 3.5m, K-band: diffraction limit 0.‘‘13
– Adaptive Optics
– AO principles, wavefront sensing
– LGS

Problems
– 109 difference in brightness in visual, Zodiacal light
• differential polarimetry: CHEOPS
• Nulling interferometry: LBT, DARWIN
39
ACTIVE & ADAPTIVE
OPTICS
40
Adaptive Optics
 ADONIS
(decommissioned): first steps
 PUEO: most productive
 ALFA
• LGS development
• PARSEC for VLT
• Pyramid wavefront sensors

NAOMI
• GLAS Rayleigh laser
• INGRID
• OASIS, from CFHT
• 0.6 – 1mm
41
Active optics

Archimedes destruction of the Roman fleet, Syracruse
•

Active optics: control shape of primary mirror
•
•
•
•

Second punic war, 219BC – 210 BC
Large, thin mirrors (VLT)
Static aberrations from M1
M2 de-centering coma: correct M2 position
One step further: tip-tilt secondary mirrors: UKIRT
3.5m New Technology Telescope on La Silla
•
•
•
Active control of shape of M1
75 actuators, 3 fixed points, 24 lateral actuators
0.05 Hz correction frequency: slow
42
Adaptive Optics


Correct wavefront
•
•
•
•
Deformable mirror, fast
Small mirrors, after telescope optics
Phase conjugation
AO secondaries (MMT, LBT)
•
Requirements: 1/50 mm, 103 Hz
Determine shape of wavefront
•
•
•
Use science object, NGS, LGS
Wavefront sensor: Shack-Hartmann, curvature,
pyramids
Analytic representation of WF: Zernike polynomials
43
AO, routine performance

K-band seeing of 0.´´8
•
•
•
Seeing disk, no tip-tilt, no AO
Tip-tilt corrections: resolution 0.´´4
Tip-tilt and AO: resolution 0.´´13
44
AO: possibilities from the ground
45
Wavefront sensing

Shack-Hartmann sensor
•
•
•
Lenslet array, sub-pupils
Measure slope of wavefront at different positions
Reconstruction of wavefront from array of slopes
46
Wavefront sensing
47
Wavefront sensing

Curvature sensing
•
Intra- and extrafocal images




2
2

I1 (r ) - I 2 (r ) lF ( F - l )    Fr 
F
r




2
2


c -  

 2 2




 


I1 ( r )  I 2 ( r )
2l  n  l 
x y
 l 
48
Wavefront sensing

Pyramid wavefront sensor
•
•
4 sub-pupils
Sub-apertures defined by detector pixels
49
Wavefront sensing

Shearing interferometer
•
•

Neural networks
•

Interfering beams represent wave-fronts
with small lateral shift r
Obtain wavefront tilt in shear direction
Experienced opticians can recognise dominant types of aberrations
from pupil images
Phase diversity
•
Retrieval of phase error from focused and
de-focused image of a star
50
ALFA
51
Laser guide stars
52
WHT/GLAS
53
ESP future projects

VLT
•

Kepler
•
•
•
•

CHEOPS
1m Telescope
42 2x1k Detectors
about 900 planets with 1 – 2 REarth
> 10% of planetary systems with > 1 planets
LBT and DARWIN/TPF
• direct detection: nulling interferometry
54
Terra Nova: Space
 55 Cancri
 G8V
 M55 Cancri = 0.85 MSonne
 T = 5250 K
55
Summary

European 2 – 4m class opt/NIR telescopes
• wide range of competitive instrumentation
• transnational access programme

Science
• very interesting science per se
– extrasolar planets
• support/preparation of 10m class
– surveys, PMAS  MUSE
• development of new instrumentation
– ALFA/LGS  PARSEC

medium sized telescopes are still needed
56
Related documents