Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
The 66th International Symposium on Molecular Spectroscopy, June 2011 Visible spectrum of Si3 Xiujuan Zhuang and Timothy C. Steimle* Department of Chemistry and Biochemistry Arizona State University, Tempe,AZ 85287 Neil Reilly, Damian Kokkin & Michael McCarthy * Harvard-Smithsonian Center for Astrophysics Varun Gupta & John P. Maier Dept. of Chem. Univ. of Basel, Basel, Switzerland ‡ John F. Stanton * Chemistry & Biochemistry U. Texas- Austin T.D. Crawford & R. Fortenberry Chemistry Department Virginia Tech. * Funded by NSF. ‡ Swiss National Science Foundation Key Previous studies (Exp.) Kitsopoulos et al (Neumark group), JCP, v93, 6108 (1990) PES on Si3- 3A’2 (D3h) 2 (e) = 36040 cm-1 Arnold & Neumark, JCP, v100, 1797 (1994) ZEKE on Si3- 3A’2 (D3h) 1(a1), 2 (e) =50110 cm-1 ,337 10 cm-1 Li, VanZee, Weltner and Raghavachari, Chem Phys. Lett., v243, 275 (1995) Matrix isolation, Infrared absorption. X1A1 (C2v)1 550 cm-1, 3 525 cm-1, Fulara, Freivogel Gutter and Maier, J. Phys. Chem. v100, 18042 (1996) Matrix isolation, Visible absorption. X1A1 (C2v) McCarthy & Thaddeus, Phys. Rev. Lett., v190, 213003 (2003) Pure Rot. in X1A1 (C2v) 2 146 cm-1, R=2.177 Å & =78.10` Key Previous studies (Theory) Rohfling & Raghavachari, JCP, v96, 2114 (1992) X1A1 (C2v) 1, 2, 3 = 551(a1), 148 (a1), 525(b2) cm-1 3A’2 (D3h) 1, 2, = 522 (a1), 285 (e) cm-1 Garcia-Fernandez, Boggs & Stanton JCP, v126, 074305 (2007) 1E1 (D3h) Jahn-Teller distort X1A1 (C2v) 1, 2, 3 = 596(a1),196 (a1), 540(b2) cm-1 & 3A’2(D3h) 1, 2, = 522 (a1), 327 (e) cm-1 Garcia-Fernandez, Boggs & Stanton JCP, v126, 074305 (2007) Starting point : D3h molecule: Config. 1 Config. 2 ….4s23p2 (Si) D3h 3A’ 1A 1 & 1B2 1A 1 & 1B2 21E’ 1A 1 1 & B2 3E’’ 1A 2 & 1B1 1A 2 & 1B1 1A 1’ 1E’’ Config. 4 Si3((a’1)2(a”2)2(e’)1(e”)1) 3E’’ 1E’’ 1,3A 1,3A Mainly “3p” 2 11E’ 3E’ Config. 3 C2v Mainly “4s” 1’’ 2’’ 1A & 1B1 1A & 1B 2 1 2 12 low-lying states E < 1. 0 eV Excites states E > 2.0 eV J.F. Stanton Unpublished Garcia-Fernandez, Boggs & Stanton JCP, v126, 074305 (2007) Singlet manifold 1A 1 1B Triplet manifold 3B 1 3A 1 1 X1A1 D3h D3h 1500 Jahn-Teller distorted to C2V states Energy (cm-1) =522 cm1 =327 cm1 =540 cm1 =569 cm-1 0 =196 cm- ~1 X A1 1 Visible spectrum -Preliminaries e” e’ a”2 a’1 Transitions in the visible/ uv Shuffle electrons amongst these 12 low-lying electronic states Ne-matrix absorption Maier’s group. J Phys Chem. 1996 Experimental method-Basel & Harvard- Smithsonian Mass-Selected REMPI SiH4 & He Pulse valve •skimmer MCP Ion Detector ArF (193 nm) laser Pulsed HV Pulsed OPO or Dye laser Resolution 0.3 cm-1 Experimental method-ASU Box-car integrator Photon counting Pulse valve PMT PMT Monochromator SiH4 & He Pulsed HV Well collimated molecular beam Rot.Temp.<20 K Pulsed dye laser Resolution 0.2 cm-1 Si3- Mass-selected REMPI “Hot” “Cold” The goal is to assign this optical spectrum! Laser Excitation Spectrum- ASU High temp. Mass-selected REMPI LIF Signal B A C D Laser Wave Number A Si3 B Si3 C Si3 & ?? D Si3 Dispersed LIF Spectra Garcia-Fernandez, Boggs & Stanton JCP, v126, 074305 (2007) X1A1 (C2v) 1, 2, 3 = 596 (a1), 196 (a1), 540 (b2) cm-1 a3A’2(D3h) 1, 2, = 522 (a1), 327(e) cm-1 Dispersed LIF Spectra Not Si3 Garcia-Fernandez, Boggs & Stanton JCP, v126, 074305 (2007) X1A1 (C2v) 1, 2, 3 = 596(a1) ,196 (a1), 540(b2), cm-1 a3A’2(D3h) 1, 2, = 522 (a1), 327(e) cm-1 ?? SiH2 High temp. Mass-selected REMPI Assignment LIF Signal B Si3 A Si3 C D Laser Wave Number 13A”1 (D3h) Si3 Ab initio predictions; EOM-CCSD (e)=1 (a1’)=0 (e)=0 (a1’)=0 A B D D (e)=1 (a1’)=0 3A’ 2 (D3h) A B (e)=0 (a1’)=0 a) b) c) 2.31 This work; ZEKE Tentative assign of REMPI The 173 cm-1 progression in DF following 0 00 a3A’2 (D3h) 13A”1 (D3h) Laser 0 00 ???? 13A”1 Singlet System (D3h) (e)=0 (a1’)=0 Intersystem crossing 0 00 2(a1)>> 0 3A’ 2 (D3h) (e)=0 (a1’)=0 ~1 X A1 (C2v) Evidence for Intersystem Crossing Mechanism: DF Monochromator Viewing Laser excitation spectrum viewed through monochromator a3A’2 (D3h) 13A” (D ) 1 Si3 Si3 3h SiH2 Evidence for Singlet Transitions in the Excitation Spectra REMPI LIF Signal Ion signal Based on Ab initio (Stanton, unpublished) results & Ne matrix results B A Not detected by LIF ! C D Laser Wave Number Summary 1. First recording of the visible spectrum of gas-phase Si3 2. Dominated by transitions in the triplet D3h form. 3. Evidence for intersystem crossing from triplet D3h to singlet C2v 4. Singlet system is absent from LIF but is in REMPI 5. Unable to detect high-resolution LIF (Not discussed) Thank You !