Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
EE16.468/16.568
Lecture 1
Class overview:
1. Brief review of physical optics, wave propagation, interference,
diffraction, and polarization
2. Introduction to Integrated optics and integrated electrical circuits
3. Guide-wave optics: 2D and 3D optical waveguide, optical fiber, mode
dispersion, group velocity and group velocity dispersion.
4. Mode-coupling theory, Mach-zehnder interferometer, Directional coupler,
taps and WDM coupler.
5. Electro-optics, index tensor, electro-optic effect in crystal, electrooptic coefficient
6. Electro-optical modulators
7. Passive and active optical waveguide devices, Fiber Optical amplifiers
and semiconductor optical amplifiers, Photonic switches and all optical
switches
8. Opto-electronic integrated circuits (OEIC)
EE16.468/16.568
Lecture 1
Complex numbers
c a ib or Cei
C: amplitude
: angle
b
C
a
c1 c2 (a1 a2 ) i(b1 b2 )
Real numbers do not have phases
Complex numbers have phases
Cei
is the phase of the complex number
EE16.468/16.568
Lecture 1
Physical meaning of multiplication of two complex numbers
c1 c2 C1ei1 C2 ei2 C1 C2 ei (1 2 )
C1e
i1
Why
C2e
i2
Number:
C1 C2
Phase:
1 2
C2
times
Phase delay
i i 1?
90
i
i 1 e 2
i
i i 11 e
i i
3
i( )
2 2
ei ( )
i 1
4
180
0
-1
1
-i
270
1 i
4
1 i;1
2
EE16.468/16.568
Lecture 1
90
1?
6
6
1e
i(
2
n)
6
, n 0,1...5
180
12
2 12 2e
2
i(
n)
12
0
-1
1
, n 0,1...11
270
Optical wave, frequency domain
Aei ( kx )
Initial phase
Vertical polarization,
k polarization, transwave
k,
x
k vector, to x-direction
Horizontal polarization
Phase delay by position
Amplitude, I=|A|2, Optical intensity
EE16.468/16.568
Lecture 1
Optical wave propagation in air (free-space)
Ae
k,
i ( kx )
C1ei1
i ( kx delay)
Ae
e i2
Time and frequency domain of optical signal
Ae
i ( kx )
Phase delay
d ela y k x
2
x
EE16.468/16.568
Lecture 1
Optical wave propagation in air (free-space)
Ae
k
∆x
i ( kx )
Wave front
Phase is the same on the plane --- plane wave
kx
2
x
Phase distortion in atmosphere
k
∆x
Aei ( kx )
Wave front distortion
Additional phase delay, non ideal plane wave
EE16.468/16.568
Lecture 1
Optical wave to different directions
i ( kx1 )
x1
Ae
Phase delay
delay kx
x2
Ae
i ( kx 2 )
Refractive index n
In vacuum,
k
2
V c
T
f
c: speed of light
In media, like glass,
2
2
k
n
/n
V c/n
/n
T
f / n
2
( x1 x 2 )
EE16.468/16.568
Lecture 1
Optical wave to different directions
i ( kx1 )
x1
Ae
Phase delay
delay kx
x2
Ae
2
( x1 x 2 )
i ( kx 2 )
In media with refractive index n
n
nx1
Ae
i ( knx1 )
Phase delay
d ela y knx
nx 2
nx1, nx2, optical path
Ae
i ( knx2 )
2
n ( x1 x 2 )
EE16.468/16.568
Lecture 1
Interference of two optical waves
a2
a1
A
Upper arm :
a3
50%
b1
Aout
b2
Lower arm :
Aout =
1 ikn( a1 a2 a3 )
Ae
2
1 ikn( a1 a2 a3 )
Ae
2
+
1 ikn( b1 b2 )
Ae
2
1 ikn( b1 b2 )
Ae
2
Phase delay between the two arms:
kn ( b1 b2 a1 a 2 a 3 )
1 ikn( a1 a2 a3 )
1 ikn( b1 b2 )
=
Ae
Ae
If phase delay is 2m, then:
2
2
1 ikn( b1 b2 )
1 ikn( a1 a2 a3 )
Ae
If phase delay is 2m +, then:
=Ae
2
2
EE16.468/16.568
March-Zehnder interferometer
n
a2
a1
b1
n2
b2
Upper arm :
a3
50%
A
Lecture 1
1 ikn( a1 a2 a3 )
Ae
2
Aout
b3
Lower arm :
b1 b2 b3 a1 a 2 a 3
1 ikn( b1 b2 )
Ae
2
Phase delay between the two arms:
k ( n2 b2 na2 )
1 ikn( a1 a2 a3 )
1 ikn( b1 b2 )
=
Ae
Ae
If phase delay is 2m, then:
2
2
1 ikn( b1 b2 )
1 ikn( a1 a2 a3 )
Ae
If phase delay is 2m +, then:
=Ae
2
2
Electro-optic effect, n2 changes with E -field
EE16.468/16.568
Lecture 1
Electro-optic modulator based on March-Zehnder interferometer
n
a2
a1
a3
50%
A
b1
n2
b2
Aout
Electro-optic effect, n2 changes with E -field
b3
Phase delay between the two arms:
k ( n2 b2 na2 )
1 ikn( a1 a2 a3 )
1 ikn( b1 b2 )
Ae
Ae
If phase delay is 2m, then:
=
2
2
1 ikn( a1 a2 a3 )
1 ikn( b1 b2 )
If phase delay is 2m +, then:
Ae
Ae
=2
2
EE16.468/16.568
Lecture 1
Reflection, refraction of light
reflection
n1 sin 1 n2 sin 2
1 1
n1
n2 > n1
n2
2 < 1
2
Refraction
reflection
1 1
n1
n2
n1 sin 1 n2 sin 2
n2 < n1
2
Refraction
2 > 1
EE16.468/16.568
Lecture 1
Total internal reflection (TIR)
reflection
n1 sin 1 n2 sin 2
1 1
n1
n2
n2 < n1
2
Refraction
When 2 = 900, 1 is critical angle
n1 sin 1 n 2 sin 2 |
2 900
sin 1 n2 / n1
n2 ,
2 > 1
EE16.468/16.568
Lecture 1
Total internal reflection (TIR)
1 1
Total reflection When 2 = 900, 1 is critical angle
n1
n1 sin 1 n 2 sin 2 |
2 900
2 = 900
n2
n2 ,
sin 1 n2 / n1
No refraction
Application – optical fiber
n1
Low loss, TIR
n2
Flexible
n1
Communication system
Electrical signal
Laser
EO modulator
Detector
Optical fiber
Electrical signal
EE16.468/16.568
Lecture 1
Reflection percentage
Intensity reflection = [(n1-n2)/(n1+n2)]2
Example 1:
n1
Refractive index of glass n = 1.5;
n2
Refractive index of air n = 1;
The reflection from glass surface is 4%;
Example 2: detector is usually made from Gallium Arsenide (GaAs), n = 3.5;
Intensity reflection = [(n1-n2)/(n1+n2)]2
n1
N2 = 3.5
The reflection from GaAs surface is 31%;
Detector, GaAs
EE16.468/16.568
Lecture 1
Interference of two optical beams, applications
1, Mach-Zehnder interferometer
n
a2
a1
a3
50%
A
b1
n2
b2
Aout
b3
Electro-optic effect, n2 changes with E -field
EE16.468/16.568
Lecture 1
2, Michelson interferometer
M1
Beam splitter
n1 d1
n2 d2
Phase difference:
k ( n2 2 d 2 n1 2 d1 )
Measuring small moving or displacement
Mirror 2
Detector
If the detected light changes from bright to dark,
Then the distance moved is half wavelength/2
Michelson interferometer measuring speed of light in ether,
speed of light not depends on direction
M1
n2 d1
Mirror
Beam splitter
n1 d2
Detector
Phase difference:
k ( n1 2b2 n2 2 d1 )
EE16.468/16.568
Lecture 1
3, Measuring surface flatness
k ( n2 d )
k ( n 2 d ' )
Accuracy: 0.1 wavelength = 0.1*500nm = 50nm
n2
n2
4, Measuring refractive index of liquid or gas
Gas in
EE16.468/16.568
Wave optics
Lecture 1
Maxwell equations:
B
E
t
D
D
H J
t
B 0
Dielectric materials
0
D E
J 0
B H
Maxwell equations in dielectric materials:
B
E
t
D 0
D
H
t
B 0
( E ) j ( B )
phasor
E jB
D 0
H jD
B 0
2
2
( E ) E E
EE16.468/16.568
Wave optics approach
Helmholtz Equation:
2
E k E 0
E 2 E 0
2
2
Free-space solutions
E yˆ E0eikz
2 2
E k0 n E 0
2
k 2 2
E xˆE0eikz
k
∆x
Aei ( kx )
Wave front
Phase is the same on the plane --- plane wave
kx
2
x
Lecture 1
EE16.468/16.568
Wave optics
Lecture 1
Helmholtz Equation:
2
E k E 0
2 E 2 E 0
k 2 2
2
2 E k02 n2 E 0
2-D Optical waveguide
x
z
y
n2 < n1
Cladding, n2
d
Core, refractive index n1
Cladding, n2
TE mode:
E yˆ E ( x )
TM mode:
H yˆ H ( x )
EE16.468/16.568
Normal reflection at material interface
Helmholtz Equation:
2
2 2
E k0 n E 0
Er
E1 xˆEineik0n1z xˆEr eik0n1z
E2 xˆEt eik0n2 z
Ein
n1
x
Ein Er Et
Ein Er Et
Ein
n2
z
Et
B
E
t
xˆ
E
x
Ex
E jH
E
H
j
Lecture 1
yˆ
y
0
E x
E x
zˆ (
)
z
y
E x
xˆ (0) yˆ
zˆ (0)
z
xˆ (0) yˆ
H
zˆ
z
0
1 r t
EE16.468/16.568
Normal reflection at material interface
Helmholtz Equation:
2
2 2
E k0 n E 0
Er
E1 xˆEineik0n1z xˆEr eik0n1z
E2 xˆEt eik0n2 z
Ein
n1
x
Lecture 1
Ein Er Et
1 r t
n2
z
Et
H Continuous @ z=0
Why?
E2 xˆEt eik0n2 z
E x
z
Continuous @ z=0
E1 xˆEineik0n1z xˆEr eik0n1z
E1
xˆ (ik 0 n1 Eineik0 n1 z ik 0 n1 Er e ik0 n1z )
z
E2
xˆik 0 n2 Et e ik0 n2 z
z
EE16.468/16.568
Normal reflection at material interface
Helmholtz Equation:
2
2 2
E k0 n E 0
Er
x
Lecture 1
E1 xˆEineik0n1z xˆEr eik0n1z
E2 xˆEt eik0n2 z
Ein
n1
Ein Er Et
1 r t
n2
E1
xˆ (ik 0 n1 Eineik0 n1 z ik 0 n1 Er e ik0 n1z )
z
Z=0
xˆ (ik 0 n1 Ein ik 0 n1 Er )
E2
xˆik 0 n2 Et e ik0 n2 z
z
xˆik 0 n2 Et
Z=0
EE16.468/16.568
Normal reflection at material interface
Helmholtz Equation:
2
2 2
E k0 n E 0
Er
x
E1 xˆEineik0n1z xˆEr eik0n1z
E2 xˆEt eik0n2 z
Ein
n1
Ein Er Et
1 r t
n2
xˆ (ik 0 n1 Ein ik 0 n1 Er ) xˆik 0 n2 Et
n1 n1r n2t
1 r t
n1 n1r n1t
t
2n1
n1 n2
r
n1 n2
n1 n2
Lecture 1
EE16.468/16.568
Lecture 1
Reflection, refraction of light
ik0 n1 rˆ
i k0 n1 sin1 x k0 n1 cos1 z
Ein yˆEine
yˆEine
Ein
1 1
y
x
n1
Er
i k0 n2 sin 2 x k0 n2 cos 2 z
Et yˆEt e
n2
z
2
Et
Eine
i k0 n1 sin1 x k0 n1 cos1 z
Eine
ik 0 n1 sin1 x
Er e
i k0 n1 sin1 x k0 n1 cos1 z
Er yˆEr e
Ein Er Et | z 0
E ei k0 n1 sin1x k0 n1 cos1z E ei k0 n2 sin 2 x k0 n2 cos 2 z |
r
t
z 0
ik 0 n1 sin1 x
n1 sin 1 n 2 sin 2
Et e
ik 0 n2 sin 2 x
Ein Er Et
EE16.468/16.568
Lecture 1
Reflection, refraction of light
Ein
1 1
y
x
z
n1
Er
n2
2
B
E
t
xˆ
E
x
0
Et
xˆ
xˆ
H Continuous @ z=0
Why?
E y
z
E y
z
E y
z
yˆ
y
Ey
E jH
zˆ
z
0
yˆ (0) zˆ (
E y
x
)
yˆ (0) zˆ (0)
Continuous @ z=0
E
H
j
EE16.468/16.568
Lecture 1
Reflection, refraction of light
ik0 n1 rˆ
i k0 n1 sin1 x k0 n1 cos1 z
Ein yˆEine
yˆEine
Ein
1 1
y
x
z
n1
Er
n2
2
Et
i k0 n1 sin1 x k0 n1 cos1 z
Er yˆEr e
i k0 n2 sin 2 x k0 n2 cos 2 z
Et yˆEt e
E y
z
Continuous @ z=0
k0 n1 cos 1Ein k0 n1 cos 1 Er k0 n2 cos 2 Er
k0 n1 cos 1Ein k0 n1 cos 1 Er k0 n1 cos 1 Et
2k0 n1 cos 1Ein k0 n1 cos 1 k0 n2 cos 2 Et
Et
2k0 n1 cos 1
Ein
k0 n1 cos 1 k0 n2 cos 2
Ein Er Et
EE16.468/16.568
Lecture 1
Reflection, refraction of light
ik0 n1 rˆ
i k0 n1 sin1 x k0 n1 cos1 z
Ein yˆEine
yˆEine
Ein
1 1
y
x
z
n1
Er
n2
2
Et
i k0 n1 sin1 x k0 n1 cos1 z
Er yˆEr e
i k0 n2 sin 2 x k0 n2 cos 2 z
Et yˆEt e
E y
z
Continuous @ z=0
k0 n1 cos 1Ein k0 n1 cos 1 Er k0 n2 cos 2 Er
Ein Er Et
k0 n2 cos 2 Ein k0 n2 cos 2 Er k0 n2 cos 2 Et
k0 n2 cos 2 k0 n1 cos1 Ein k0 n2 cos 2 k0 n1 cos1 Er
Er
k0 n1 cos 1 k0 n2 cos 2
Ein
k0 n1 cos 1 k0 n2 cos 2
0
EE16.468/16.568
Lecture 1
Reflection, refraction of light
n1 sin 1 n 2 sin 2
Ein
1 1
y
x
z
n1
Er
r
n1 cos 1 n2 cos 2
n1 cos 1 n2 cos 2
t
2n1 cos 1
n1 cos 1 n2 cos 2
n2
2
Et
r
t
1
1
EE16.468/16.568
Lecture 1
Ein
y
x
z
n1
1
1
1
1
Er
2
n2
2
Ein xˆEin cos1 zˆEin sin 1 ei k0n1 sin1x k0n1 cos
Er xˆEr cos 1 zˆEr sin 1 e i k0 n1 sin1 x k0 n1 cos1 z
Et xˆEt cos 2 zˆEt sin 2 ei k0n2 sin2 xk0n2 cos2 z
Et
Ein cos 1e i k0 n1 sin1x Er cos 1e i k0 n1 sin1x Et cos 2 ei k0 n2 sin 2 x
n1 sin 1 n 2 sin 2
Ein cos 1 Er cos 1 Et cos 2
EE16.468/16.568
Lecture 1
Ein
y
x
z
n1
1
1
1
1
Er
2
n2
2
B
E
t
Ein xˆEin cos1 zˆEin sin 1 ei k0n1 sin1x k0n1 cos
Er xˆEr cos 1 zˆEr sin 1 e i k0 n1 sin1 x k0 n1 cos1 z
Et xˆEt cos 2 zˆEt sin 2 ei k0n2 sin2 xk0n2 cos2 z
Et
xˆ
E
x
Ex
yˆ
y
0
zˆ
z
Ez
E
E x
E z
E z
yˆ ( x
) zˆ (
)
y
z
x
y
E
E z
xˆ 0 yˆ ( x
) zˆ (0)
z
x
xˆ
E x E z
z
x
continuous
EE16.468/16.568
Lecture 1
Ein
y
x
n1
1
1
1
2
n2
z
1
Er
2
Et
Ein xˆEin cos1 zˆEin sin 1 ei k0n1 sin1x k0n1 cos
Er xˆEr cos 1 zˆEr sin 1 e i k0 n1 sin1 x k0 n1 cos1 z
Et xˆEt cos 2 zˆEt sin 2 ei k0n2 sin2 xk0n2 cos2 z
E x E z
z
x
continuous
Ein cos 1k0 n1 cos 1ei k0 n1 sin1x Er cos 1k0 n1 cos 1ei k0 n1 sin1x
Ein sin 1k0 n1 sin 1ei k0 n1 sin1x Er sin 1k0 n1 sin 1ei k0 n1 sin1x
=
Et cos 2 k0 n2 cos 2 ei k0 n2 sin 2 x Et sin 2 k0 n2 sin 2 ei k0 n2 sin 2 x
Eink0 n1 Er k0 n1 Er k0 n2
EE16.468/16.568
Lecture 1
Ein
y
x
z
n1
1
1
1
1
Er
2
n2
2
Et
Ein xˆEin cos1 zˆEin sin 1 ei k0n1 sin1x k0n1 cos
Er xˆEr cos 1 zˆEr sin 1 e i k0 n1 sin1 x k0 n1 cos1 z
Et xˆEt cos 2 zˆEt sin 2 ei k0n2 sin2 xk0n2 cos2 z
Ein k0 n1 Er k0 n1 Et k0 n2
Ein cos 1 Er cos 1 Et cos 2
Einn1 cos 1 Er n1 cos 1 Et n2 cos 1
Einn1 cos 1 n1Er cos 1 n1Et cos 2
2n1 cos 1
t
n1 cos 2 n2 cos 1
EE16.468/16.568
Lecture 1
Ein
y
x
z
n1
1
1
1
1
Er
2
n2
2
Et
Ein xˆEin cos1 zˆEin sin 1 ei k0n1 sin1x k0n1 cos
Er xˆEr cos 1 zˆEr sin 1 e i k0 n1 sin1 x k0 n1 cos1 z
Et xˆEt cos 2 zˆEt sin 2 ei k0n2 sin2 xk0n2 cos2 z
Ein k0 n1 Er k0 n1 Et k0 n2
Ein cos 1 Er cos 1 Et cos 2
Ein n1 cos 2 Er n1 cos 2 Et n2 cos 2
Ein n2 cos 1 Er n2 cos 1 Et n2 cos 2
Ein n2 cos 1 n1 cos 2 Er n2 cos 1 n1 cos 2 0
n1 cos 2 n2 cos 1
r
n2 cos 1 n1 cos 2
2n1 cos 1
t
n1 cos 2 n2 cos 1
EE16.468/16.568
Lecture 1
Ein
y
x
z
n1
1
1
1
1
Er
2
n2
2
Et
n1 cos 2 n2 cos 1
r
n2 cos 1 n1 cos 2
2n1 cos 1
t
n1 cos 2 n2 cos 1
n1 cos 2 n2 cos 1
tan( 2 1 )
r
n2 cos 1 n1 cos 2
tan( 2 1 )
Ein
Brewster’s angle
n1
1
1
1
Er
n2
2 Et
http://buphy.bu.edu/~duffy/semester2/c27_brewster.html
EE16.468/16.568
Lecture 1
Ein
y
x
z
n1
1
1
1
1
Er
2
n2
2
Et
n1 cos 2 n2 cos 1
r
n2 cos 1 n1 cos 2
2n1 cos 1
t
n1 cos 2 n2 cos 1
EE16.468/16.568
Normal reflection at material interface
Helmholtz Equation:
2
2 2
E k0 n E 0
Er
E1 xˆEineik0n1z xˆEr eik0n1z
E2 xˆEt eik0n2 z
Ein
n1
x
n2
Er
Lecture 1
2n1
t
n1 n2
n1
Ein
n1
x
n2
r
rt
r3t
r5t
n1 n2
n1 n2
n2
t
t
t
t
r
r
t
r
t
r2 t
r4 t
EE16.468/16.568
Lecture 1
Equal difference series
a1 , a2 ...an ...
a2 a1 b
a3 a2 b
+
=
an an1 b
an a1 (n 1)b
Sn a1 a2 ...an
a2 an1 a1 b an1 a1 an
+
Sn an an 1 ...a1
a3 an2 a1 2b an2 a1 an
=
2Sn n(an a1 )
Sn
n
n
n
(an a1 ) (an a1 ) na1 (n 1)b na1
2
2
2
EE16.468/16.568
Power series
a1 , a2 ...an ...
a2 ba1
a3 ba2
…
x
an ban 1
an b n 1a1
-
=
Sn a1 a2 ...an
bSn ba1 ba2 ...ban a2 a3 ...an1
(1 b) Sn a1 an1
a1 an 1 a1 bn a1
Sn
1 b
1 b
Lecture 1
EE16.468/16.568
Lecture 1
Power series
a1 , a2 ...an ...
S a1 a2 ...an ...
a1 (1 bn )
a1
lim
n
1 b
1 b
When |b|<1
b can be anything, number, variable, complex number or function
Optical cavity, multiple reflections
n1
Sr t1r t2 ...tn ...
t1r
1 r2
rt
r3t
r5t
n2
t
t
t
r
r
t
r
t
t
St t1 t2 ...tn ...
r2 t
r4 t
t1
1 r2
EE16.468/16.568
Lecture 1
Optical cavity, wavelength dependence, resonant
n1
A0=1
t
n2
r
eikn2 L
eikn2 L
t
teikn2 Lt
r
r
t
tr2ei 2 kn2 Lt
t
tr4ei 4 kn2 Lt
L
b r 2 ei 2 kn2 L
t 2eikn2 L
At A1 A2 ...
1 r 2ei 2 kn2 L
I t St
2
2 ikn2 L
2
2
te
t
2 i 2 kn2 L
1 r e
1 Re i 2 kn2 L
2
R, intensity reflection
EE16.468/16.568
Lecture 1
Optical cavity, wavelength dependence, resonant
I t St
2
2 ikn2 L
2
2
te
t
1 r 2ei 2 kn2 L
1 Re i 2 kn2 L
2
Example: n2 = 1.5, R=0.04, L = 0.05mm, =0.55µm
R, intensity reflection
1
1
0.9
0.99
0.8
Intensity
0.98
0.7
0.97
0.6
0.96
0.5
0.4
0.95
0.3
0.94
0.2
0.93
0.92
0.55
0.1
0.552
0.554
0.556
0.558
0.56
Wavelength (um)
0.562
0.564
0
0.55
0.552
0.554
0.556
0.558
Wavelength (um)
0.56
0.562
0.564
EE16.468/16.568
Lecture 1
Optical cavity, wavelength dependence, resonant
I t St
2
2 ikn2 L
2
2
te
t
1 r 2ei 2 kn2 L
1 Re i 2 kn2 L
2
Resonant condition
2 kn 2 L ( 2 m 1) Destructively Interference
2 kn 2 L 2 m
2
n 2 L m
m=1, half- cavity
m=2, cavity
Constructively Interference
2n2 L m
Resonant condition, m = 1, 2, 3, …
EE16.468/16.568
Lecture 1
Optical cavity, Free-spectral range (FSR)
2n2 L m
2 n2 L
m
2 n2 L
m 1
m
-
Resonant condition, m = 1, 2, 3, …
m 1
2n2 L
m1
2n2 L
m
2n2 L
2
1
1
2n2 L(m m 1 )
m1m
2
2n2 L
1
FSR
2
2n2 L
Example: n2 = 1.5, R=0.04, L = 1mm, =0.55µm
EE16.468/16.568
Lecture 1
Optical cavity, Free-spectral range (FSR)
FSR
2
2n2 L
L increase, FSR decrease, FSR not dependent on R
Example: n2 = 1.5, R=0.04, L = 0.05mm, =0.55µm
1
FSR
2
2n2 L
0.9
0.02 m
0.8
0.7
0.6
0.5
L = 0.5mm
FSR
2
2n2 L
0.4
0.002m
0.3
0.2
0.1
0
0.55
0.552
0.554
FSR FSR
0.556
0.558
0.56
0.562
0.564
EE16.468/16.568
Lecture 1
Loss, and photon lifetime of an resonant cavity
Intensity left after two mirror reflection:
r1
R1R2
r1r2
e
t /
R1R2
t / ln( R1R2 )
e t / 1
2n2 L / c
ln( R1 R2 )
t
2n2 L / c
1 R1 R2
2 n2 L
t
c
R1 R2
EE16.468/16.568
Lecture 1
Quality factor Q of an resonant cavity
Intensity left after two mirror reflection:
r1
r1r2
Q
I
dI / dt
dI / dt I (1 R1 R2 ) /
Time domain
I I 0 e j 0 t e t /
Q
Frequency domain
2n2 L / c
(1 R1 R2 )
Q
I ( ) I 0 e t / e j0t e jt dt
I 0 e ( j 1/ )t dt I 0
1/
1
[ j ( 0 ) 1 / ]
I0
2n2 L
c
2n2 L / c
1 R1 R2
Q
( j 1 / )
[( 0 ) 2 (1 / ) 2 ]
EE16.468/16.568
Transmission matrix analysis of resonant cavity
Lecture 1
L
n1
A1
A2 t12 A1 r21B2
A2
n2
B1
eikn2 L
B1 t21B2 r12 A1
B2
At this interface
A2 t12 A1 r21B2
B1 t21 A2 r12 A1
1
r21
B1 t21B2 r12 A2 B2
t12
t12
A2 r21B2 t12 A1
1
r21
A1
A2 B2
t12
t12
r12
t12t 21 r 12r21
B1
A2
B2
t12
t12
EE16.468/16.568
Transmission matrix analysis of resonant cavity
Lecture 1
L
n1
A1
A2
n2
B1
eikn2 L
B2
1
r21
A1
A2 B2
t12
t12
r12
t12t 21 r 12r21
B1
A2
B2
t12
t12
In Matrix form:
r21
A1 1 1
A2
B1 t12 r12 t12t21 r12r21 B2
4n1n2
(n1 n2 )(n2 n1 )
t12t21 r12r21
1
2
2
n1 n2
n1 n2
A1
A2
M1
B1
B2
r21
11
M1
t12 r12 t12t21 r12r21
EE16.468/16.568
Transmission matrix analysis of resonant cavity
L
n1
A1
B1
A2
B2
ik0 n2 L
A3
A3 A2 eik 0n2 L
n2
B3
B2 B3eik 0n2 L
e
In Matrix form:
A2 e ik 0n2 L
B2 0
0 A3
ik 0n2 L
e
B3
A3
A2
M 2
B2
B3
e ik 0n2 L
M 2
0
0
ik 0n2 L
e
Lecture 1
EE16.468/16.568
Transmission matrix analysis of resonant cavity
L
n1
A1
A2
eik0 n2 L
n2
B1
B2
A3
A4
A4 t21 A3 r12 B4
B3
B4
B3 t12 B4 r21 A3
In Matrix form:
r12
A3 1 1
A4
B3 t21 r21 t12t21 r12r21 B4
A3
A4
M 3
B4
B3
r12
11
M3
t21 r21 t12t21 r12r21
Lecture 1
EE16.468/16.568
Transmission matrix analysis of resonant cavity
L
n1
A1
A2
eik0 n2 L
n2
B1
B2
A3
A4
A4 t21 A3 r12 B4
B3
B4
B3 t12 B4 r21 A3
In Matrix form:
A3
A1
A2
A4
M 1 M 1M 2 M1M 2 M 3
B1
B2
B4
B3
A1
A4
M
B1
B4
M M 1M 2 M 3
Lecture 1
EE16.468/16.568
Transmission matrix analysis of resonant cavity
Lecture 1
L
n1
A1
A2
eik0 n2 L
n2
B1
A3
A4
A4 t21 A3 r12 B4
B3
B4
B3 t12 B4 r21 A3
B2
In Matrix form:
A1 M11 M12 A4
B1 M 21 M 22 B4
1
A4
A1
A1 M11 A4
M 11
M 21
B1 M 21 A4
A1
M 11
A1 M11 M12 A4
B1 M 21 M 22 B4 0
1
T
M 11
2
M 21
R
M 11
2
EE16.468/16.568
E-field profile inside the resonant cavity
Lecture 1
L
n1
A1
A2
eik0 n2 L
n2
B1
A3
A4
B3
B4
B2
A1 M11 M12 A4
B1 M 21 M 22 B4 0
1
A4
A1
M 11
A1 M11 M12 A4
B1 M 21 M 22 0
A1
A2
M1
B1
B2
A1 A2
M
B1 B2
1
1
EE16.468/16.568
E-field profile inside the resonant cavity
L
n1
A1
A2
eik0 n2 L
n2
B1
A3
A4
B3
B4
B2
E1 A1eik0n1z B1eik0n1z
E2 A2eik0n2 z B2eik0n2 z
E4 A4eik0n1z
Lecture 1
EE16.468/16.568
E-field profile inside the resonant cavity
L
n1
A1
B1
A2
d
ik0 n2 L
A3
A4
n2
B3
B4
e
B2
E1 A1eik0n1z B1eik0n1z
E2 A2eik0n2 z B2eik0n2 z
E4 A4eik0n1z
Lecture 1
n1
L
A5
A6
eik0 n2 L
n2
B5
B6
A7
A8
B7
B8
EE16.468/16.568
Bragg gratings
/4
n1
n2
d1
d2
Lecture 1
EE16.468/16.568
Lecture 1
Ring cavity, Ring resonator
5%, t
L = 2R0
95%, r
I t St
2
R0
2
n 2 L m
FSR
2
2n2 L
2n2 L m
2 ikn2 L
2
2
te
t
1 r 2ei 2 kn2 L
1 Re i 2 kn2 L
2
EE16.468/16.568
Lecture 1
Ring cavity, Ring resonator filter
L = 2R0
2
n 2 L m
FSR
2
2n2 L
2n2 L m
EE16.468/16.568
Lecture 1
Lens and optical path
Focal length
Focal plane
Same optical path
f
f
focus
lens
EE16.468/16.568
Lecture 1
Lens and optical path
Focal length
f
Focal plane
Same optical path
f
f
focus
lens
Same optical path
f
f
focus
lens
EE16.468/16.568
Lens and optical path
Lecture 1
Focal length
f
Focal plane
Same optical path
EE16.468/16.568
Lecture 1
Interference of multiple Waves, gratings
Near field pattern
x1
A1 A0eiknx1
A2 A0eiknx2
Atotoal A1 A2 A0eiknx1 A0eiknx2
x2
I totoal Atotal A0e
2
A0e
iknx1
(1 e
iknx1
ikn ( x2 x1 )
2
A0e
iknx2 2
) A0 (1 e
2
A0 1 cos( knx ) i sin( knx )
2
ikn ( x2 x1 )
2
A0 {[1 cos( knx )]2 sin 2 (knx )}
2
Screen
)
2
EE16.468/16.568
Lecture 1
Diffraction of Waves
Far field pattern
When ∆ = 2m, bright
When ∆ = 2m+ , dark
2m = (2/) d*sin()
x1
d
m = d*sin()
m = d* ∆L /f
∆L
∆L= m *f/d, bright spots
∆L = f*sin()
x2
f
∆x
Focal plane
∆x = d*sin()
∆ = k*∆x =(2/) d*sin()
Screen
EE16.468/16.568
Lecture 1
Multiple slots, grating
Far field pattern
d
d
When ∆ = 2m, bright
Focal plane
When ∆ = 2m+ , dark
2m = (2/) d*sin()
∆x1
m = d*sin()
∆x2
∆L
tan() = ∆L /f
~ tan() ~ sin(), when is small
∆L = f*sin()
f
m = d* ∆L /f
∆L= m *f/d, bright spots
Bright spot still at small position
∆xm
∆xm = md*sin()
∆m = k*∆xm =(2/) md*sin()
Screen
EE16.468/16.568
Lecture 1
Multiple slots, grating
Atotoal A0 A1 A2 ... Am
d
d
Focal plane
A0eikx0 A0eikx1 A0eikx2 ... A0eikxm
A0eikx0 (1 eikx1 eikx2 ... eikxm )
∆x1
A0eikx0 (1 eikd sin eik 2 d sin ... eikmd sin )
∆x2
∆
L
∆L = f*sin()
f
∆xm
∆xm = md*sin()
∆m = k*∆xm =(2/) md*sin()
Screen
A0e
ikx0
1 eik ( m1) d sin
1 eikd sin
I totoal Atotal
A0
2
2
ik ( m 1) d sin
ikx0 1 e
A0e
1 eikd sin
2
1 cos( kmd sin )2 sin 2 (kmd sin )
1 cos( kd sin )2 sin 2 (kd sin )
EE16.468/16.568
Lecture 1
EE16.468/16.568
Lecture 1
Optical wave, photon
Photon energy:
E hv,
is the frequency of the photon,
E hc /
p k ,
E mc
For photon:
2
2
momentum of the photon,
mcc pc,
E pc hv,
p k ,
k
2
c kc pc,
,
c f v ,
EE16.468/16.568
Lecture 1
More on grating, Grating period, Phase matching condition
k vector, k = (2/), along the beam propagation direction
d
d
d is called grating period, often use symbol: ,
∆x1
Grating vector = 2 /,
Phase-matching condition
∆x2
kgrating = 2/
∆xm
∆xm = md*sin()
∆m = k*∆xm =(2/) md*sin()
kout *sin() = kgrating = 2/
d*sin() =
EE16.468/16.568
Lecture 1
Distributed feedback grating (DFB grating)
Effective reflection
kin
kin
k
k
kout
kout = kin – k
Phase-matching condition
2nout / out = 2nin / in – 2/
kout
kout = kin – k = - kin
Phase-matching condition
2/ = 2*2/
= /2
EE16.468/16.568
Diffraction: Multiple beam interference
Lecture 1
EE16.468/16.568
Diffraction:
Lecture 1
EE16.468/16.568
Single slot diffraction:
Lecture 1
Atotoal A0 A1 A2 ... Am
A0eikx0 A0eikx1 A0eikx2 ... A0eikxm
d
A0e
ikz sin( )
0
dz A0 (1 eikd sin( ) )
d
ikd sin( )
I totoal Atotoal
2
I0
e
ikd sin / 2
ikd sin( )
A0 (1 e
)
kd sin( )
ikd sin / 2
(e
e
kd sin( )
ikd sin / 2
2
2
2
)
2i sin( kd sin / 2)
sin( kd sin / 2)
I0
I0
kd sin( )
kd sin / 2
I0
sin 2 ( )
2
,
kd sin / 2
d sin
2
EE16.468/16.568
Lecture 1
Single slot diffraction:
I totoal I 0
sin 2 ( )
2
kd sin / 2
,
d sin
When d sin m
2
When
d sin m
bright
dark
EE16.468/16.568
Lecture 1
Single slot diffraction:
I totoal I 0
sin 2 ( )
2
kd sin / 2
,
d sin
When d sin m
2
When
d sin m
bright
dark
EE16.468/16.568
Angular width :
Lecture 1
I totoal I 0
sin 2 ( )
2
,
kd sin / 2 d sin
first dark: d sin m
sin
d
Half angular width
d
EE16.468/16.568
Lecture 1
Diffraction of a lens
d
Focus size
d
Focus size
EE16.468/16.568
Lecture 1
Resolution of optical instrument
d
Focus size f * f
d
' 1.22
' 1.22
∆’
eye
d
d
d = 16mm.
d
EE16.468/16.568
Polarization of light: Linear polarization
Lecture 1
EE16.468/16.568
Lecture 1
Polarization of light: linear polarization
Any linear polarization can be
decomposed into two primary
polarization with the same phase
B0 cos(t )
A0 cos(t )
Why decompose into two primary polarization directions?
In crystal, the refractive index is different along different polarizations
no
z
x
z
y
no
x
ne
Refractive index ellipsoid
y
ne
EE16.468/16.568
Lecture 1
Polarization of light: circular polarization
B0 cos(t )
tan 1[ B0 cos(t ) / A0 cos(t )]
tan 1[ B0 / A0 ]
t 0
A0 cos(t )
A0 cos(t / 2)
A0 cos(t / 2)
Lag /2
A0 cos(t )
A0 cos(t / 2)
A0 cos(t )
t / 2
t
A0 cos(t / 2)
A0 cos(t )
A0 cos(t )
EE16.468/16.568
Lecture 1
Polarization of light: circular polarization
A0 cos(t / 2)
Clockwise
t 3 / 2
A0 cos(t / 2)
A0 cos(t )
t 2
A0 cos(t )
A0 sin( t )
A0 cos(t / 2)
t
A0 cos(t )
A0 cos(t )
A0 cos(t )
EE16.468/16.568
Lecture 1
Polarization of light: circular polarization
Count-clockwise
A0 sin( t )
A0 cos(t / 2)
t
A0 cos(t )
A0 cos(t )
elliptical polarization
B0 sin( t )
B0 cos(t / 2)
A0 cos(t )
t
A0 cos(t )
EE16.468/16.568
Lecture 1
Delays along different directions:
z
d
y
x
no
d
no
no
z
x
y
ne
ne
Refractive index ellipsoid
no lag
Phase difference: k (n0 ne )d
ne
ne
when k (n0 ne )d / 2
(n0 ne )d / 4
Right (clockwise) circular polarization
Quarter-wavelength /4 plate
EE16.468/16.568
Lecture 1
Right (clockwise) circular polarization
A0 cos(t / 2)
A0 cos(t )
/4 plate
45º
A0 cos(t )
A0 cos(t )
d
no
no lag
Phase difference: k (n0 ne )d
ne
ne
when
k (n0 ne )d
(n0 ne )d / 2
Change the direction of the polarization
half-wavelength /2 plate
EE16.468/16.568
Lecture 1
Change the direction of the polarization by 2
A0 cos(t )
/2 plate
A0 cos(t )
A0 cos(t )
A0 cos(t )
EO modulator
polarizer
analyzer
dark
no
no
Bright
ne
EE16.468/16.568
Lecture 1
EO modulator
A0 cos(t )
dark
analyzer
polarizer
A0 cos(t )
no
k (n0 ne )d
n0 E
V
t
V
ne
Bright
EE16.468/16.568
Lecture 1
Circular polarizations and linear polarizations
A0 cos(t / 2)
A0 cos(t / 2)
A0 cos(t )
A0 cos(t )
A0 cos(t )
A0 cos(t / 2)
EE16.468/16.568
Lecture 1
Circular polarizations and linear polarizations
A0 cos(t )
A0 cos(t / 2)
A0 cos(t / 2)
A0 cos(t )
+
A0 cos(t ) A0 cos(t / 2)
Linear polarization
A0 cos(t ) A0 cos(t / 2)
EE16.468/16.568
Lecture 1
Circular polarizations and linear polarizations
A0 cos(t )
A0 cos(t / 2)
A0 cos(t / 2 )
A0 cos(t )
+
cos( ) cos( ) 2 cos(
A0 cos(t ) A0 cos(t / 2)
2 A0 cos(t / 2 / 4) cos( / 2 / 4)
tan( ' )
cos( / 4 / 2)
cos( / 4 / 2)
2
) cos(
2
Linear polarization
A0 cos(t ) A0 cos(t / 2 )
2 A0 cos(t / 4 / 2) cos( / 4 / 2)
)
EE16.468/16.568
Lecture 1
Faraday rotation
Apply B field generate delay
for left or right polarization
A0 cos(t )
A0 cos(t / 2)
A0 cos(t / 2 )
A0 cos(t )
EE16.468/16.568
Lecture 1
Jones Matrix
1
0
E0
E0
0
1
E0 sin( )
E0 cos( )
cos
sin
EE16.468/16.568
Lecture 1
Jones Matrix
E0 cos(t )
2
1 1
2 i
E0 cos(t )
E0 cos(t )
2
E0 cos(t )
1 1
2 i
b cos(t )
2
a cos(t )
a
ib
EE16.468/16.568
Lecture 1
Jones Matrix
E0 cos(t )
2
1 1
2 i
Linear
E0 cos(t )
E0 cos(t )
2
1
0
+
E0 cos(t )
1 1
2 i
b cos(t )
2
a cos(t )
a
ib
EE16.468/16.568
Lecture 1
Jones Matrix
1
0
1 0
0 i
/2 phase delay
/4 plate
1 0 1 1
0 i 0 0
E0
1 1
2 1
/4 plate
/4
1 0
0 i
/2 phase delay
E0 cos( )
E0 cos(t )
2
E0 cos(t )
1 1
2 i
1 1 0 1
2 0 i 1
EE16.468/16.568
y’
Lecture 1
Jones Matrix
y
x x' cos y ' ( sin )
x’
y x' sin y ' cos
x
x cos
y sin
cos
sin
x' cos
y ' sin
sin x
cos y
cos
R( )
sin
sin
cos
x'
x
R( )
y'
y
sin x'
cos y '
sin x x'
cos y y '
EE16.468/16.568
y’
y
Lecture 1
Jones Matrix
x’
90 0
1
0
cos
R( )
sin
x
0 1
R( 90 )
1 0
0
1 0 1 1 0
R( 90 )
0 1 0 0 1
0
E0
sin
cos
EE16.468/16.568
Lecture 1
Jones Matrix
b cos(t )
2
a
ib
a cos(t )
cos
R( )
sin
b cos(t )
2
sin
cos
a cos(t )
a cos
R( )
ib sin
sin a a cos ib sin
cos ib a sin ib cos
EE16.468/16.568
E0 cos(t )
2
E0 cos(t )
1 1
2 i
Lecture 1
Jones Matrix
1 cos
R( )
i sin
cos
R( )
sin
sin
cos
sin 1 cos i sin
cos i sin i cos
EE16.468/16.568
Lecture 1
Jones Matrix
E0 cos(t )
2
1 1
2 i
Linear
E0 cos(t )
E0 cos(t )
2
+
E0 cos(t )
1 cos
sin
cos i sin
sin i cos
2 cos( / 2)cos( / 2) i sin( / 2)
2 sin( / 2)cos( / 2) i sin( / 2)
cos( / 2) sin( / 2) 1
cos( / 2) i sin( / 2)
sin( / 2) cos( / 2) 0
2 cos 2 ( / 2) i 2 sin(
2 sin( / 2) cos( / 2)
EE16.468/16.568
Lecture 1
Faraday rotation
Apply B field generate delay
for left or right polarization
A0 cos(t )
A0 cos(t / 2)
A0 cos(t / 2 )
A0 cos(t )