Download Serge CHERNOV Dr.Chem.Sci., Cchem FRCS, ASIS FRPS

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Optical properties of colloidal particles :
Silver colloidal particles evaporated in high vacuum on Formvar supporting film
(a)
(b)
(c)
- absorption spectrums,
(b) - sizes distribution histogramms,
(c) - electron microscopic photos of three typical layers
Optical properties of colloidal particles :
It is established that colloidal particles of silver with the size less than 3 nm in a
diameter lose metallic properties, silver becomes dielectric.
d , nm
Dependence of maximum
position in the distribution of
50
silver particles sizes upon
maximum in an attenuation
spectrum. (o) - for coated
40
particles, (x) - for ultra-thin
sections of particles, immersed
30
in gelatin. Dotted lines correspond
to boundary values for metallic
20
silver (derived from theoretical
calculations): 420 nm on the
10
wavelength axis, and 2.2 nm on
the diameter axis.
0
400
500
600
700
800
900
 , nm
Optical properties of colloidal particles :
Investigation of absorption spectra of colloidal particles in different media
d , nm
160
140
2
120
1
100
80
60
40
4
3
20
0
400
450
500
550
600
650
700
750
 , nm
Calculated dependencies of colloidal silver particles diameters upon the maximum of the absorption
spectra in different media: 1 - H2O; 2 - gelatin; 3 - AgCl; 4 - AgBr
Optical properties of colloidal particles :
For arguments ρ and mρ , called as z:
Task is D=f()
coefficients of в absorption ka ,
z f+1
z2
Ψf(z) = ---------------- .  -------- . (-----) k
scattering ks , reflection kr:
ka = kr - ks
1.3.….(2f+1)
k=1
z f+1 (f+1)
Theory G.Mie (1908)
2π
∞
∞
k!
2
(-1)k
z2
Ψf’(z) = ---------------- .  -------- . (-----) k
ka = -------- Im  f(f+1).(-1)f.(af – bf) ,
ka2
(-1)k
∞
1.3.....(2f+1)
f=1
k=1
∞
k!
1
.
----------------------(2f+3).….(2f+2k+1)
1
.
f+2k+1
------------------------- . -----------
2
(2f+3).….(2f+2k+1)
f+1
ρ = (2..a.na)/λ ,
i = (-1)1/2
(2f)!
ζf(z) = if+1 . eiz .  (-1)f . -------∞
f2.(f + 1)2
kr = -------- 
-------------.
2π
k=1
(|af|2
–
|bf|2)
,
ka2 f=1 2f + 1
where
2f + 1
ψf(ρ).ψf’(mρ) – m.ψf’(ρ).ψf(mρ)
af = i2f+1 . --------- . ------------------------------------------f(f+1)
ζf(ρ).ψf’(mρ) – m.ζf’(ρ).ψf(mρ)
2f + 1 ψf’(ρ).ψf(mρ) – m.ψf(ρ).ψf’(mρ)
bf = (-1)2f+1 . --------- . ------------------------------------------f(f+1)
ζf’(ρ).ψf(mρ) – m.ζf(ρ).ψf’(mρ)
where ψ, ζ – Bessel functions.
(2f)f.f!
f
ζf’(z) = ζf-1(z) - --- . ζf(z)
z
where ka = (2..na)/,
m = (n – i)/na,
For Ag particles with diameter 30 nm ka = kr
We should know the spectral dependence of reflection coefficient
n and absorption  of metal, reflection coefficient of medium na
and 2a –diameter of metal’s particles and wave length of light
in vacuum .
Optical properties of colloidal particles :
n5(469) = n5(422) = 0,063
n15(614) = n15(433) = 0,060
n25(729) = n25(443) = 0,059
n25(828) = n35(454) = 0,057
5(469) = 5(422) = 2,156.
15(614) = 15(433) = 2,257
25(729) = 25(443) = 2,318
35(828) = 35(454) = 2,448
d, nm
Correction of optical constants of silver
Dependencies of colloidal silver particles diameters
upon the maximum of the absorption spectra :
1 – theoretical calculated and 2 – experimental
produced dependences
Lines correspond to particles with diameters
5, 15, 25 and 35 nm.
,
nm
5
15
25
35
massive
420
440
460
480
500
520
540
560
580
600
620
700
750
800
850
2,138/0,063
2,146/0,063
2,153/0,064
2,159/0,064
2,165/0,066
2,169/0,068
2,173/0,072
2,176/0,075
2,178/0,080
2,179/0,085
2,180/0,091
-
2,138/0,063
2,154/0,060
2,169/0,057
2,183/0,055
2,197/0,054
2,201/0,053
2,222/0,054
2,232/0,054
2,242/0,056
2,251/0,058
2,269/0,061
2,285/0,080
-
2,138/0,063
2,156/0,058
2,176/0,053
2,196/0,049
2,212/0,046
2,228/0,044
2,244/0,042
2,259/0,041
2,272/0,040
2,285/0,041
2,300/0,042
2,338/0,052
2,355/0,065
2,368/0,081
-
2,138/0,063
2,161/0,056
2,184/0,050
2,206/0,044
2,226/0,039
2,247/0,035
2,266/0,032
2,284/0,029
2,302/0,027
2,318/0,025
2,334/0,024
2,399/0,028
2,416/0,036
2,438/0,048
2,454/0,065
2,138/0,063
2,321/0,059
2,503/0,056
2,685/0,053
2,865/0,051
3.045/0,050
3,224/0,049
3,401/0,049
3,579/0,050
3,756/0,052
3,931/0,054
4,624/0,069
5,051/0,085
5,472/0,104
5,887/0,128
Optical properties of colloidal particles :
Correction of the optical constants
of small silver particles, which are
strongly differ from properties of
massive silver
6
5
n, 
4
Dependence of optical constants for silver –
 (absorption coefficient, full line) and
n (refraction index, dotted line) upon the
wavelength .

3
2
The curves, corresponding to massive samples – 1
in black; silver particles with diameter
5 nm – in yellow, 15 nm - in blue,
0
25 nm – in green, 35 nm - in red.
n
300 400 500 600 700 800
 , nm
Related documents