Download Unit 6: Descriptive Statistics

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Introduction to Using
Statistical Analyses
Measures
of Central Tendency
(done . . .for now)
Measures of Variability
Writing
Using the Standard Normal Curve
A Reminder of the Way We Note Things:
Our Shorthand
X


N
i
A Reminder of the Way We Note Things:
Our Shorthand
X


N
i
A Reminder of the Way We Note Things:
Our Shorthand
X


N
i
A Reminder of the Way We Note Things:
Our Shorthand
X


N
i
A Reminder of the Way We Note Things:
Our Shorthand
X


N
i
Population and Sample Means
X


N
i
Population and Sample Means
X


i
N
X
X
 i
n
Introduction to Using
Statistical Analyses
Measures
of Central Tendency
(done . . .for now)
Measures
of Variability
Writing
Using
the Standard Normal Curve
Assessing Dispersion by
Looking at Spread
Data
2
5
8
Mean = 5
Assessing Dispersion by
Looking at Spread
Data
2
5
8
Mean = 5
How far from the
mean are the data?
Starting to Assess the Variance
s
2
X


2 -5 =-3
5 -5 = 0
8 -5 = 3
i
X
n 1

2
A Formula to Assess the
Variance
s
2
X


i
X
n 1
2 -5 =-3
9
5 -5 = 0
0
8 -5 = 3
9

2
A Formula to Assess the
Variance
s
2
X


9
5 -5 = 0
0
8 -5 = 3
X  X

s 
9
18
i
n 1
X
n 1
2 -5 =-3
2
i
2
=

2
A Formula to Assess the
Variance
s
2
X


9
5 -5 = 0
0
8 -5 = 3
X  X

s 
9
18
i
n 1
X

n 1
2 -5 =-3
2
i
2
2
=
9
2 18
A Formula to Assess the
Variance
s
2
X


9
5 -5 = 0
0
2
i
n 1
X

n 1
2 -5 =-3
8 -5 = 3
X  X

s 
i
2
2
=
9
18
9
2 18
THE VARIANCE
Sample and Population
Standard Deviations
s
 
 X
i
 X

2
n 1
 X
i
 
N

2
SAMPLE AND POPULATION TERMS
Sample
Population

SAMPLE AND POPULATION TERMS



n
Sample
Mean
Population
X

XX  
i
i
N
2

SAMPLE AND POPULATION TERMS



Sample
Mean
Variance
Population
X
2

XX i  


X 
X  X
n


2
s 
s 
i
2
2
N n
1
i
2
i

n 1

SAMPLE AND POPULATION TERMS



Sample
Mean
Variance
Standard
Deviation
Population
X
2

XX i   2



X

X

X
n


i
i
2
2
2
s 2 
s N 


X

X
n

1
n

1

i
2
2
 
s 
i
n 1
Introduction to Using
Statistical Analyses
Measures
of Central Tendency
(done . . .for now)
Measures of Variability
Writing
Using
the Standard Normal Curve
Introduction to Using
Statistical Analyses
Measures
of Central Tendency
(done . . .for now)
Measures of Variability
Writing
Using
Curve
the Standard Normal
Standard Normal Curve
Standard Normal Curve


X



2
-3
i
N
=0
= 1 
+3

z Scores when Data Do Not Already Have a Mean
of 0 and a Standard Deviation of 1
z
X 

z Scores when Data Do Not Already Have a Mean
of 0 and a Standard Deviation of 1
z
or
X 

XX
z
s
Areas under the Standard
Normal Curve
z = -1.67
z=1
0
Areas under the
Standard Normal Curve
z = -1.75
z = 1.75
0
Areas under the
Standard Normal Curve
z=1
0
Correlations
Correlation Example
Speaking Skill
Writing Skill
X
Y
1
3
2
4
3
7
4
5
5
6
Correlation Chart
*
7
6
*
5
4
Writing skill
3
*
2
*
*
1
0
0
1
2
3
Speaking Skill
4
5
Correlation Chart
*
7
6
*
5
4
Writing skill
3
*
2
*
*
1
0
0
1
2
3
Speaking Skill
4
5
Correlation Chart
*
7
6
*
5
4
Writing skill
3
*
2
*
*
1
0
0
1
2
3
Speaking Skill
4
5
Correlation Example Using
z scores
Speaking Skill
Writing Skill
X
Y
Zx
Zy
1
- 1.27
3 - 1.27
2
- .63
4 - .63
3
0
7
1.27
4
.63
5
0
5
1.27
6
.63
Correlation Example Using
z scores
Speaking Skill
Writing Skill
X
Y
Zx
Zy
Zx * Zy
1
- 1.27
3 - 1.27
1.61
2
- .63
4 - .63
.4
3
0
7
1.27
0
4
.63
5
0
0
5
1.27
6
.63
.8
Correlation Example Using
z scores
Speaking Skill
Writing Skill
X
Y
Zx
Zy
Zx * Zy
1
- 1.27
3 - 1.27
1.61
2
- .63
4 - .63
.4
3
0
7
1.27
0
4
.63
5
0
0
5
1.27
6
.63
.8
SUM = _ 2.81 __
n-1 = 4
Correlation Example Using
z scores
Speaking Skill
Writing Skill
X
Y
Zx
Zy
Zx * Zy
1
- 1.27
3 - 1.27
1.61
2
- .63
4 - .63
.4
3
0
7
1.27
0
4
.63
5
0
0
5
1.27
6
.63
.8
SUM = _ 2.81 __
n-1 = 4
=.70
Correlation Example
Speaking Skill
X
XX
Writing Skill
Y
Y Y
1
-2
3 -2
2
-1
4 -1
3
0
7
2
4
1
5
0
5
2
6
1
Correlation Example
Speaking Skill
X
XX
Writing Skill
Y
Y Y
XX
*
1
-2
3 -2
4
2
-1
4 -1
1
3
0
7
2
0
4
1
5
0
0
5
2
6
1
2
Y Y
Correlation Example
Speaking Skill
X
XX
Writing Skill
Y
Y Y
XX
*
1
-2
3 -2
4
2
-1
4 -1
1
3
0
7
2
0
4
1
5
0
0
5
2
6
1
2
 X  X  Y  Y 
Y Y
=7
Correlation Example
Speaking Skill
X
XX
Writing Skill
Y
Y Y
XX
*
1
-2
3 -2
4
2
-1
4 -1
1
3
0
7
2
0
4
1
5
0
0
5
2
6
1
2
 X  X  Y  Y 
n-1
Y Y
=7
=4
Correlation Computation
7
 1. 75
4
r
s X * sY
Correlation Computation
7
 1. 75
4
r
s X * sY
Correlation Computation
7
 1. 75
4
r
s X * sY
1. 75
r
1.58 *1.58
1. 75
r
. 70
2.5
Correlation Computation
7
 1. 75
4
r
s X * sY
1. 75
r
1.58 *1.58
1. 75
r
. 70
2.5
Correlation Computation
7
 1. 75
4
r
s X * sY
1. 75
r
1.58 *1.58
1. 75
r
. 70
2.5
Related documents