Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Anderson u Sweeney u Williams CONTEMPORARY BUSINESS STATISTICS WITH MICROSOFT EXCEL u Slides Prepared by JOHN LOUCKS u © 2001 South-Western/Thomson Learning Slide 1 Chapter 3 Descriptive Statistics II: Numerical Methods - Part A Measures of Location Measures of Variability Slide 2 Measures of Location Mean Median Mode Percentiles Quartiles x Slide 3 Example: Apartment Rents Given below is a sample of monthly rent values ($) for one-bedroom apartments. The data is a sample of 70 apartments in a particular city. The data are presented in ascending order. 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 4 Mean The mean of a data set is the average of all the data values. If the data are from a sample, the mean is denoted by x. xi x n If the data are from a population, the mean is denoted by (mu). xi N Slide 5 Example: Apartment Rents Mean xi 34, 356 x 490.80 n 70 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 6 Median The median of a data set is the value in the middle when the data items are arranged in ascending order. If there is an odd number of items, the median is the value of the middle item. If there is an even number of items, the median is the average of the values for the middle two items. Slide 7 Example: Apartment Rents Median Median = 50th percentile i = (p/100)n = (50/100)70 = 35.5 Averaging the 35th and 36th data values: Median = (475 + 475)/2 = 475 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 8 Mode The mode of a data set is the value that occurs with greatest frequency. Slide 9 Example: Apartment Rents Mode 450 occurred most frequently (7 times) Mode = 450 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 10 Using Excel to Compute the Mean, Median, and Mode Formula Worksheet 1 2 3 4 5 6 A Apartment 1 2 3 4 5 B C D E Monthly Rent ($) 525 Mean =AVERAGE(B2:B71) 440 Median =MEDIAN(B2:B71) 450 Mode =MODE(B2:B71) 615 480 Note: Rows 7-71 are not shown. Slide 11 Using Excel to Compute the Mean, Median, and Mode Value Worksheet 1 2 3 4 5 6 A Apartment 1 2 3 4 5 B C D Monthly Rent ($) 525 Mean 440 Median 450 Mode 615 480 E 490.80 475.00 450.00 Note: Rows 7-71 are not shown. Slide 12 Percentiles The pth percentile of a data set is a value such that at least p percent of the items take on this value or less and at least (100 - p) percent of the items take on this value or more. • Arrange the data in ascending order. • Compute index i, the position of the pth percentile. i = (p/100)n • If i is not an integer, round up. The pth percentile is the value in the ith position. • If i is an integer, the pth percentile is the average of the values in positions i and i+1. Slide 13 Example: Apartment Rents 90th Percentile i = (p/100)n = (90/100)70 = 63 Averaging the 63rd and 64th data values: 90th Percentile = (580 + 590)/2 = 585 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 14 Quartiles Quartiles are specific percentiles First Quartile = 25th Percentile Second Quartile = 50th Percentile = Median Third Quartile = 75th Percentile Slide 15 Example: Apartment Rents Third Quartile Third quartile = 75th percentile i = (p/100)n = (75/100)70 = 52.5 = 53 Third quartile = 525 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 16 Using Excel to Compute Percentiles and Quartiles 1 2 3 4 5 6 Unsorted Monthly Rent ($) A B C D Apart- Monthly ment Rent ($) 1 525 2 440 3 450 4 615 5 480 Note: Rows 7-71 are not shown. E F Slide 17 Using Excel to Compute Percentiles and Quartiles Sorting Data Step 1 Select any cell containing data in column B Step 2 Select the Data pull-down menu Step 3 Choose the Sort option Step 4 When the Sort dialog box appears: In the Sort by box, make sure that Monthly Rent ($) appears and that Ascending is selected In the My list has box, make sure that Header row is selected Click OK Slide 18 Using Excel to Compute Percentiles and Quartiles 1 2 3 4 5 6 Sorted Monthly Rent ($) A B C D Apart- Monthly ment Rent ($) 1 425 2 430 3 430 4 435 5 435 Note: Rows 7-71 are not shown. E F Slide 19 Using Excel to Compute Percentiles and Quartiles 1 2 3 4 5 6 Formula Worksheet for 90th Percentile’s Index A B C D E F Apart- Monthly Number of ment Rent ($) Observations Percentile Index i 1 425 70 90 =(E2/100)*D2 2 430 3 430 4 435 5 435 Note: Rows 7-71 are not shown. Slide 20 Using Excel to Compute Percentiles and Quartiles 1 2 3 4 5 6 Value Worksheet for 90th Percentile’s Index A B C D E Apart- Monthly Number of ment Rent ($) Observations Percentile 1 425 70 90 2 430 3 430 4 435 5 435 Note: Rows 7-71 are not shown. F Index i 63.00 Slide 21 Using Excel to Compute Percentiles and Quartiles 1 2 3 4 5 6 Value Worksheet for 3rd Quartile’s Index A B C D E Apart- Monthly Number of ment Rent ($) Observations Percentile 1 425 70 75 2 430 3 430 4 435 5 435 Note: Rows 7-71 are not shown. F Index i 52.50 Slide 22 Measures of Variability Range Interquartile Range Variance Standard Deviation Coefficient of Variation Slide 23 Range The range of a data set is the difference between the largest and smallest data values. It is the simplest measure of variability. It is very sensitive to the smallest and largest data values. Slide 24 Example: Apartment Rents Range Range = largest value - smallest value Range = 615 - 425 = 190 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 25 Interquartile Range The interquartile range of a data set is the difference between the third quartile and the first quartile. It is the range for the middle 50% of the data. It overcomes the sensitivity to extreme data values. Slide 26 Example: Apartment Rents Interquartile Range 3rd Quartile (Q3) = 525 1st Quartile (Q1) = 445 Interquartile Range = Q3 - Q1 = 525 - 445 = 80 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 27 Variance The variance is the average of the squared differences between each data value and the mean. If the data set is a sample, the variance is denoted by s2. 2 ( x x ) i s2 n 1 If the data set is a population, the variance is denoted by 2. 2 ( x ) i 2 N Slide 28 Standard Deviation The standard deviation of a data set is the positive square root of the variance. It is measured in the same units as the data, making it more easily comparable, than the variance, to the mean. If the data set is a sample, the standard deviation is denoted s. s s2 If the data set is a population, the standard deviation is denoted (sigma). 2 Slide 29 Coefficient of Variation The coefficient of variation indicates how large the standard deviation is in relation to the mean. If the data set is a sample, the coefficient of variation is computed as follows: s (100) x If the data set is a population, the coefficient of variation is computed as follows: (100) Slide 30 Example: Apartment Rents Variance s2 ( xi x ) 2 n 1 2 , 996.16 Standard Deviation s s2 2996. 47 54. 74 Coefficient of Variation s 54. 74 100 100 11.15 x 490.80 Slide 31 Using Excel to Compute the Sample Variance and Standard Deviation Formula Worksheet 1 2 3 4 5 6 7 A B C D E Apart- Monthly ment Rent ($) 1 525 Mean =AVERAGE(B2:B71) 2 440 Median =MEDIAN(B2:B71) 3 450 Mode =MODE(B2:B71) 4 615 Variance =VAR(B2:B71) 5 480 Std. Dev. =STDEV(B2:B71) 6 510 Note: Rows 8-71 are not shown. Slide 32 Using Excel to Compute the Sample Variance and Standard Deviation Value Worksheet 1 2 3 4 5 6 7 A B C D Apart- Monthly ment Rent ($) 1 525 Mean 2 440 Median 3 450 Mode 4 615 Variance 5 480 Std. Dev. 6 510 E 490.80 475.00 450.00 2996.16 54.74 Note: Rows 8-71 are not shown. Slide 33 Using Excel’s Descriptive Statistics Tool Step 1 Select the Tools pull-down menu Step 2 Choose the Data Analysis option Step 3 Choose Descriptive Statistics from the list of Analysis Tools … continued Slide 34 Using Excel’s Descriptive Statistics Tool Step 4 When the Descriptive Statistics dialog box appears: Enter B1:B71 in the Input Range box Select Grouped By Columns Select Labels in First Row Select Output Range Enter D1 in the Output Range box Select Summary Statistics Select OK Slide 35 Using Excel’s Descriptive Statistics Tool 1 2 3 4 5 6 7 8 Value Worksheet (Partial) A B C D E Apart- Monthly ment Rent ($) Monthly Rent ($) 1 525 2 440 Mean 490.8 3 450 Standard Error 6.542348114 4 615 Median 475 5 480 Mode 450 6 510 Standard Deviation 54.73721146 7 575 Sample Variance 2996.162319 Slide 36 Using Excel’s Descriptive Statistics Tool Value Worksheet (Partial) 9 10 11 12 13 14 15 16 A 8 9 10 11 12 13 14 15 B 430 440 450 470 485 515 575 430 C D Kurtosis Skewness Range Minimum Maximum Sum Count E -0.334093298 0.924330473 190 425 615 34356 70 Slide 37 End of Chapter 3, Part A Slide 38