Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western /Thomson Learning Slide 1 Chapter 3 Descriptive Statistics: Numerical Methods Measures of Location Measures of Variability Measures of Relative Location and Detecting Outliers Exploratory Data Analysis Measures of Association Between Two Variables The Weighted Mean and Working with Grouped Data x Slide 2 Measures of Location Mean Median Mode Percentiles Quartiles Slide 3 Example: Apartment Rents Given below is a sample of monthly rent values ($) for one-bedroom apartments. The data is a sample of 70 apartments in a particular city. The data are presented in ascending order. 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 4 Mean The mean of a data set is the average of all the data values. xIf the data are from a sample, the mean is denoted by . xi x n If the data are from a population, the mean is denoted by m (mu). xi N Slide 5 Example: Apartment Rents Mean xi 34, 356 x 490.80 n 70 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 6 Median The median is the measure of location most often reported for annual income and property value data. A few extremely large incomes or property values can inflate the mean. Slide 7 Median The median of a data set is the value in the middle when the data items are arranged in ascending order. For an odd number of observations, the median is the middle value. For an even number of observations, the median is the average of the two middle values. Slide 8 Example: Apartment Rents Median Median = 50th percentile i = (p/100)n = (50/100)70 = 35.5 Averaging the 35th and 36th data values: Median = (475 + 475)/2 = 475 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 9 Mode The mode of a data set is the value that occurs with greatest frequency. The greatest frequency can occur at two or more different values. If the data have exactly two modes, the data are bimodal. If the data have more than two modes, the data are multimodal. Slide 10 Example: Apartment Rents Mode 450 occurred most frequently (7 times) Mode = 450 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 11 Percentiles A percentile provides information about how the data are spread over the interval from the smallest value to the largest value. Admission test scores for colleges and universities are frequently reported in terms of percentiles. Slide 12 Percentiles The pth percentile of a data set is a value such that at least p percent of the items take on this value or less and at least (100 - p) percent of the items take on this value or more. • Arrange the data in ascending order. • Compute index i, the position of the pth percentile. i = (p/100)n • If i is not an integer, round up. The pth percentile is the value in the ith position. • If i is an integer, the pth percentile is the average of the values in positions i and i+1. Slide 13 Example: Apartment Rents 90th Percentile i = (p/100)n = (90/100)70 = 63 Averaging the 63rd and 64th data values: 90th Percentile = (580 + 590)/2 = 585 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 14 Quartiles Quartiles are specific percentiles First Quartile = 25th Percentile Second Quartile = 50th Percentile = Median Third Quartile = 75th Percentile Slide 15 Example: Apartment Rents Third Quartile Third quartile = 75th percentile i = (p/100)n = (75/100)70 = 52.5 = 53 Third quartile = 525 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 16 Measures of Variability It is often desirable to consider measures of variability (dispersion), as well as measures of location. For example, in choosing supplier A or supplier B we might consider not only the average delivery time for each, but also the variability in delivery time for each. Slide 17 Measures of Variability Range Interquartile Range Variance Standard Deviation Coefficient of Variation Slide 18 Range The range of a data set is the difference between the largest and smallest data values. It is the simplest measure of variability. It is very sensitive to the smallest and largest data values. Slide 19 Example: Apartment Rents Range Range = largest value - smallest value Range = 615 - 425 = 190 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 20 Interquartile Range The interquartile range of a data set is the difference between the third quartile and the first quartile. It is the range for the middle 50% of the data. It overcomes the sensitivity to extreme data values. Slide 21 Example: Apartment Rents Interquartile Range 3rd Quartile (Q3) = 525 1st Quartile (Q1) = 445 Interquartile Range = Q3 - Q1 = 525 - 445 = 80 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 22 Variance The variance is a measure of variability that utilizes all the data. It is based on the difference between the value of each observation (xi) and the mean (x for a sample, for a population). Slide 23 Variance The variance is the average of the squared differences between each data value and the mean. If the data set is a sample, the variance is denoted by s2. s2 2 ( x x ) i n 1 If the data set is a population, the variance is denoted by 2. ( xi ) 2 N 2 Slide 24 Standard Deviation The standard deviation of a data set is the positive square root of the variance. It is measured in the same units as the data, making it more easily comparable, than the variance, to the mean. If the data set is a sample, the standard deviation is s s2 denoted s. If the data set is a population, the standard deviation is denoted (sigma). 2 Slide 25 Coefficient of Variation The coefficient of variation indicates how large the standard deviation is in relation to the mean. If the data set is a sample, the coefficient of variation is computed as follows: s (100) x If the data set is a population, the coefficient of variation is computed as follows: (100) Slide 26 Example: Apartment Rents Variance s n 1 2 ( xi x ) 2 2 , 996.16 Standard Deviation s s2 2996. 47 54. 74 Coefficient of Variation s 54. 74 100 100 11.15 x 490.80 Slide 27 Measures of Relative Location and Detecting Outliers z-Scores Chebyshev’s Theorem Empirical Rule Detecting Outliers Slide 28 z-Scores The z-score is often called the standardized value. It denotes the number of standard deviations a data value xi is from the mean. xi x zi s A data value less than the sample mean will have a zscore less than zero. A data value greater than the sample mean will have a z-score greater than zero. A data value equal to the sample mean will have a zscore of zero. Slide 29 Example: Apartment Rents z-Score of Smallest Value (425) xi x 425 490.80 z 1. 20 s 54. 74 Standardized Values for Apartment Rents -1.20 -0.93 -0.75 -0.47 -0.20 0.35 1.54 -1.11 -0.93 -0.75 -0.38 -0.11 0.44 1.54 -1.11 -0.93 -0.75 -0.38 -0.01 0.62 1.63 -1.02 -0.84 -0.75 -0.34 -0.01 0.62 1.81 -1.02 -0.84 -0.75 -0.29 -0.01 0.62 1.99 -1.02 -0.84 -0.56 -0.29 0.17 0.81 1.99 -1.02 -0.84 -0.56 -0.29 0.17 1.06 1.99 -1.02 -0.84 -0.56 -0.20 0.17 1.08 1.99 -0.93 -0.75 -0.47 -0.20 0.17 1.45 2.27 -0.93 -0.75 -0.47 -0.20 0.35 1.45 2.27 Slide 30 Chebyshev’s Theorem At least (1 - 1/k2) of the items in any data set will be within k standard deviations of the mean, where k is any value greater than 1. • At least 75% of the items must be within k = 2 standard deviations of the mean. • At least 89% of the items must be within k = 3 standard deviations of the mean. • At least 94% of the items must be within k = 4 standard deviations of the mean. Slide 31 Example: Apartment Rents Chebyshev’s Theorem Let k = 1.5 with x = 490.80 and s = 54.74 At least (1 - 1/(1.5)2) = 1 - 0.44 = 0.56 or 56% of the rent values must be between x - k(s) = 490.80 - 1.5(54.74) = 409 and x + k(s) = 490.80 + 1.5(54.74) = 573 Slide 32 Example: Apartment Rents Chebyshev’s Theorem (continued) Actually, 86% of the rent values are between 409 and 573. 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 33 Empirical Rule For data having a bell-shaped distribution: • Approximately 68% of the data values will be within one standard deviation of the mean. Slide 34 Empirical Rule For data having a bell-shaped distribution: • Approximately 95% of the data values will be within two standard deviations of the mean. Slide 35 Empirical Rule For data having a bell-shaped distribution: • Almost all (99.7%) of the items will be within three standard deviations of the mean. Slide 36 Example: Apartment Rents Empirical Rule Within +/- 1s Within +/- 2s Within +/- 3s 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 Interval 436.06 to 545.54 381.32 to 600.28 326.58 to 655.02 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 % in Interval 48/70 = 69% 68/70 = 97% 70/70 = 100% 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 37 Detecting Outliers An outlier is an unusually small or unusually large value in a data set. A data value with a z-score less than -3 or greater than +3 might be considered an outlier. It might be an incorrectly recorded data value. It might be a data value that was incorrectly included in the data set. It might be a correctly recorded data value that belongs in the data set ! Slide 38 Example: Apartment Rents Detecting Outliers The most extreme z-scores are -1.20 and 2.27. Using |z| > 3 as the criterion for an outlier, there are no outliers in this data set. Standardized Values for Apartment Rents -1.20 -0.93 -0.75 -0.47 -0.20 0.35 1.54 -1.11 -0.93 -0.75 -0.38 -0.11 0.44 1.54 -1.11 -0.93 -0.75 -0.38 -0.01 0.62 1.63 -1.02 -0.84 -0.75 -0.34 -0.01 0.62 1.81 -1.02 -0.84 -0.75 -0.29 -0.01 0.62 1.99 -1.02 -0.84 -0.56 -0.29 0.17 0.81 1.99 -1.02 -0.84 -0.56 -0.29 0.17 1.06 1.99 -1.02 -0.84 -0.56 -0.20 0.17 1.08 1.99 -0.93 -0.75 -0.47 -0.20 0.17 1.45 2.27 -0.93 -0.75 -0.47 -0.20 0.35 1.45 2.27 Slide 39 Exploratory Data Analysis Five-Number Summary Box Plot Slide 40 Five-Number Summary Smallest Value First Quartile Median Third Quartile Largest Value Slide 41 Example: Apartment Rents Five-Number Summary Lowest Value = 425 First Quartile = 450 Median = 475 Third Quartile = 525 Largest Value = 615 425 440 450 465 480 510 575 430 440 450 470 485 515 575 430 440 450 470 490 525 580 435 445 450 472 490 525 590 435 445 450 475 490 525 600 435 445 460 475 500 535 600 435 445 460 475 500 549 600 435 445 460 480 500 550 600 440 450 465 480 500 570 615 440 450 465 480 510 570 615 Slide 42 Box Plot A box is drawn with its ends located at the first and third quartiles. A vertical line is drawn in the box at the location of the median. Limits are located (not drawn) using the interquartile range (IQR). • The lower limit is located 1.5(IQR) below Q1. • The upper limit is located 1.5(IQR) above Q3. • Data outside these limits are considered outliers. … continued Slide 43 Box Plot (Continued) Whiskers (dashed lines) are drawn from the ends of the box to the smallest and largest data values inside the limits. The locations of each outlier is shown with the symbol * . Slide 44 Example: Apartment Rents Box Plot Lower Limit: Q1 - 1.5(IQR) = 450 - 1.5(75) = 337.5 Upper Limit: Q3 + 1.5(IQR) = 525 + 1.5(75) = 637.5 There are no outliers. 37 5 40 0 42 5 45 0 47 5 50 0 52 5 550 575 600 625 Slide 45 Measures of Association Between Two Variables Covariance Correlation Coefficient Slide 46 Covariance The covariance is a measure of the linear association between two variables. Positive values indicate a positive relationship. Negative values indicate a negative relationship. Slide 47 Covariance If the data sets are samples, the covariance is denoted by sxy. ( xi x )( yi y ) sxy n 1 If the data sets are populations, the covariance is denoted . xy by xy ( xi x )( yi y ) N Slide 48 Correlation Coefficient The coefficient can take on values between -1 and +1. Values near -1 indicate a strong negative linear relationship. Values near +1 indicate a strong positive linear relationship. If the data sets are samples, the coefficient is rxy. rxy sxy sx s y xy xy If the data sets are populations, the coefficient is xy . x y Slide 49 The Weighted Mean and Working with Grouped Data Weighted Mean Mean for Grouped Data Variance for Grouped Data Standard Deviation for Grouped Data Slide 50 Weighted Mean When the mean is computed by giving each data value a weight that reflects its importance, it is referred to as a weighted mean. In the computation of a grade point average (GPA), the weights are the number of credit hours earned for each grade. When data values vary in importance, the analyst must choose the weight that best reflects the importance of each value. Slide 51 Weighted Mean x = wi xi wi where: xi = value of observation i wi = weight for observation i Slide 52 Grouped Data The weighted mean computation can be used to obtain approximations of the mean, variance, and standard deviation for the grouped data. To compute the weighted mean, we treat the midpoint of each class as though it were the mean of all items in the class. We compute a weighted mean of the class midpoints using the class frequencies as weights. Similarly, in computing the variance and standard deviation, the class frequencies are used as weights. Slide 53 Mean for Grouped Data Sample Data fM x f i fM i i i Population Data i N where: fi = frequency of class i Mi = midpoint of class i Slide 54 Example: Apartment Rents Given below is the previous sample of monthly rents for one-bedroom apartments presented here as grouped data in the form of a frequency distribution. Rent ($) Frequency 420-439 8 440-459 17 460-479 12 480-499 8 500-519 7 520-539 4 540-559 2 560-579 4 580-599 2 600-619 6 Slide 55 Example: Apartment Rents Mean for Grouped Data Rent ($) 420-439 440-459 460-479 480-499 500-519 520-539 540-559 560-579 580-599 600-619 Total fi 8 17 12 8 7 4 2 4 2 6 70 Mi 429.5 449.5 469.5 489.5 509.5 529.5 549.5 569.5 589.5 609.5 f iMi 3436.0 7641.5 5634.0 3916.0 3566.5 2118.0 1099.0 2278.0 1179.0 3657.0 34525.0 34, 525 493. 21 70 This approximation differs by $2.41 from the actual sample mean of $490.80. x Slide 56 Variance for Grouped Data Sample Data 2 f ( M x ) i i s2 n 1 Population Data 2 f ( M ) i i 2 N Slide 57 Example: Apartment Rents Variance for Grouped Data s2 3, 017.89 Standard Deviation for Grouped Data s 3, 017.89 54. 94 This approximation differs by only $.20 from the actual standard deviation of $54.74. Slide 58 End of Chapter 3 Slide 59