Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Grouped Data Calculation Mean, Median and Mode 2. First Quantile, third Quantile and Interquantile Range. 1. Measure of the Central Tendency Mean – Grouped Data o The mean may often be confused with the median, mode or range. The mean is the arithmetic average of a set of values, or distribution. Example: The following table gives the frequency distribution of the number of orders received each day during the past 50 days at the office of a mail-order company. Calculate the mean. Solution: Number of order 10 – 12 13 – 15 16 – 18 19 – 21 Number of order 10 – 12 13 – 15 16 – 18 19 – 21 f x fx 4 12 20 14 n = 50 11 14 17 20 44 168 340 280 = 832 f 4 12 20 14 n = 50 X is the midpoint of the class. It is adding the class limits and divide by 2. x= fx = 832 = 16.64 n 50 Median and Interquartile Range – Grouped Data o a median is described as the numerical value separating the higher half of a sample, a population, or a probability distribution, Median = Lm n 2 -F + fm i Step 1: Construct the cumulative frequency distribution. Step 2: Decide the class that contain the median. Class Median is the first class with the value of cumulative frequency equal at least n/2. Step 3: Find the median by using the following formula: Where: n = the total frequency F = the cumulative frequency before class median f = the frequency of the class median m i = the class width Lm = the lower boundary of the class median Example: Based on the grouped data below, find the median: Time to travel to work 1 – 10 11 – 20 21 – 30 31 – 40 41 – 50 Frequency 8 14 12 9 7 Solution: 1st Step: Construct the cumulative frequency distribution Time to travel to work 1 – 10 11 – 20 21 – 30 31 – 40 41 – 50 So, n 50 25 2 2 F = 22, fm = 12, Frequency 8 14 12 9 7 class median is the 3rd class Lm = 20.5 and i = 10 Cumulative Frequency 8 22 34 43 50 Therefore, n F Median = Lm 2 i fm 25 - 22 = 21.5 10 12 = 24 Thus, 25 persons take less than 24 minutes to travel to work and another 25 persons take more than 24 minutes to travel to work. Quartiles o a quartile is one of three points that divide a data set into four equal groups, each representing a fourth of the distributed sampled population. Using the same method of calculation as in the Median, we can get Q1 and Q3 equation as follows: n 3n F F 4 Q1 LQ1 + i Q3 LQ3 + 4 i f f Q 1 Q3 Example: Based on the grouped data below, find the Interquartile Range Time to travel to work 1 – 10 11 – 20 21 – 30 31 – 40 41 – 50 Frequency 8 14 12 9 7 Solution: 1st Step: Construct the cumulative frequency distribution Time to travel Frequency to work 1 – 10 8 11 – 20 14 21 – 30 12 31 – 40 9 41 – 50 7 2nd Step: Determine the Q1 and Q3 n 50 12.5 4 4 Class Q1 is the 2nd class Therefore, Class Q1 Cumulative Frequency 8 22 34 43 50 n F Q1 LQ1 4 i fQ1 12.5 - 8 10.5 10 14 13.7143 3n 3 50 Class Q3 37.5 4 4 Class Q3 is the 4th class Therefore, n F Q3 LQ3 4 i f Q3 37.5 - 34 30.5 10 9 34.3889 Interquartile Range IQR = Q3 – Q1 IQR = Q3 – Q1 calculate the IQ IQR = Q3 – Q1 = 34.3889 – 13.7143 = 20.6746 Mode – Grouped Data Mode •Mode is the value that has the highest frequency in a data set. •For grouped data, class mode (or, modal class) is the class with the highest frequency. •To find mode for grouped data, use the following formula: Δ1 Mode = Lmo + i Δ + Δ 1 2 Where: i is the class width 1 is the difference between the frequency of class mode and the frequency of the class after the class mode 2 is the difference between the frequency of class mode and the frequency of the class before the class mode Lmo is the lower boundary of class mode Calculation of Grouped Data - Mode Example: Based on the grouped data below, find the mode Time to travel to work Frequency 1 – 10 11 – 20 21 – 30 31 – 40 41 – 50 8 14 12 9 7 Solution: Based on the table, Lmo = 10.5, 1 = (14 – 8) = 6, 2 = (14 – 12) = 2 and i = 10 6 Mode = 10.5 10 17.5 6 2 Variance and Standard Deviation -Grouped Data Population Variance: Variance for sample data: 2 s 2 fx fx 2 2 N N fx 2 fx n 1 2 n Standard Deviation: Population: Sample: 2 2 s2 s2 o the variance is used as a measure of how far a set of numbers are spread out from each other. o Standard deviation is a widely used measurement of variability or diversity used in statistics and probability theory. It shows how much variation or "dispersion" there is from the average (mean, or expected value). Example: Find the variance and standard deviation for the following data: No. of order f 10 – 12 13 – 15 16 – 18 19 – 21 4 12 20 14 Total n = 50 Solution: No. of order 10 – 12 13 – 15 16 – 18 19 – 21 Total f x fx fx2 4 12 20 14 n = 50 11 14 17 20 44 168 340 280 832 484 2352 5780 5600 14216 Variance, s2 fx 2 fx n 1 2 n 832 14216 2 50 50 1 7.5820 2 Standard Deviation, s s 7.5820 2.75 Thus, the standard deviation of the number of orders received at the office of this mail-order company during the past 50 days is 2.75.