Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Statistical Analysis of Reservoir Data Statistical Models • Statistical Models are used to describe real world observations – provide a quantitative model • prediction • interpolation Normal Distribution • Example – porosity from cores or logs • Two parameters: – mean – standard deviation • Characteristics – symmetric – mean, median and mode occur at same value Probability Paper • Any two parameter model can be plotted as a straight line – cumulative frequency for normal distributions plot as straight line • standard deviation from slope Log Normal Distribution • Example – permeability values from cores or logs • Two parameters: – mean (of log(x)) – standard deviation (of log(x)) • Characteristics – log(x) values have normal distribution – assymetric • large “tail” toward large values • mean, median and mode do not occur at same value Log Probability Paper • Cumulative frequency for log normal distributions plot as straight line • standard deviation from slope -2s -1s 0 +1s +2s Reservoir heterogeniety Usually permeabilities are “lognormally” distributed. That is, the logarithm of their values form a normal (bell-shaped) probability curve. This can be demonstrated by plotting permeabilities, arranged in order from smallest to largest, on a “logprobability” scale. Dykstra-Parsons permeability variation = From Craig k50 k84.1 V k50 Reservoir heterogeniety • Dykstra-Parsons Perm. Variation, VDP: • step1--arrange perms in increasing order • step2--assign percentiles to each perm number • step3--plot on log-probability scale • step4--compute VDP k 50 k 84.1 k 50 Reservoir heterogeniety • Dykstra-Parsons Perm. Variation, VDP: • step1--transform permeability data [Ln(k)] • step2--calculate s, the sample standard deviation, of the transformed data • step3--compute VDP 1 exp( s) Example—Calculation of VDP Permeability Data (Table 6.1 of Craig) 2.9 7.4 30.4 3.8 8.6 11.3 1.7 17.6 24.6 5.5 2.1 21.2 4.4 2.4 5.0 167.0 1.2 2.6 22.0 11.7 3.6 920.0 37.0 10.4 16.5 19.5 26.6 7.8 32.0 10.7 6.9 3.2 13.1 41.8 9.4 50.4 35.2 0.8 18.4 20.1 16.0 71.5 1.8 14.0 84.0 23.5 13.5 1.5 17.0 9.8 Mean = 28.9 Std Dev = Ln(k) ~ N(m ,s 2) 1.0647 2.0015 3.4144 1.3350 2.1518 2.4248 0.5306 2.8679 3.2027 1.7047 0.7419 3.0540 1.4816 0.8755 1.6094 5.1180 0.1823 0.9555 3.0910 2.4596 1.2809 6.8244 3.6109 2.3418 2.8034 2.9704 3.2809 2.0541 3.4657 2.3702 1.9315 1.1632 2.5726 3.7329 2.2407 3.9200 3.5610 -0.2231 2.9124 3.0007 2.7726 4.2697 0.5878 2.6391 4.4308 3.1570 2.6027 0.4055 2.8332 2.2824 Mean = 2.3744 Std Dev = Note: CV = s/k 14.5 5.3 1.0 6.7 11.0 10.0 12.9 27.8 15.0 8.1 93.8 39.9 4.8 3.9 74.0 120.0 19.0 55.2 22.7 6.0 15.4 2.3 3.0 8.4 25.5 4.1 12.4 2.0 47.4 6.3 4.6 12.0 0.6 8.9 1.5 3.5 3.3 5.2 4.3 44.5 9.1 29.0 99.0 7.6 5.9 33.5 6.5 2.7 66.0 5.7 60.0 2.6741 1.6677 0.0000 1.9021 2.3979 2.3026 2.5572 3.3250 2.7081 2.0919 1.2618 3.6864 1.5686 1.3610 4.3041 4.7875 2.9444 4.0110 3.1224 1.7918 2.7344 0.8329 1.0986 2.1282 3.2387 1.4110 2.5177 0.6931 3.8586 1.8405 1.5261 CV = V DP = 2.4849 -0.5108 2.1861 0.4055 1.2528 1.1939 1.6487 1.4586 3.7955 2.2083 0.5314 0.7169 3.3673 4.5951 2.0281 1.7750 3.5115 1.8718 0.9933 4.1897 1.7405 4.0943 V DP = 1 - exp(-s)