Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 3 Numerically Summarizing Data Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Section 3.1 Measures of Central Tendency Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objectives 1. Determine the arithmetic mean of a variable from raw data 2. Determine the median of a variable from raw data 3. Explain what it means for a statistic to be resistant 4. Determine the mode of a variable from raw data 3-3 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objective 1 • Determine the Arithmetic Mean of a Variable from Raw Data 3-4 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The arithmetic mean of a variable is computed by adding all the values of the variable in the data set and dividing by the number of observations. 3-5 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The population arithmetic mean, μ (pronounced “mew”), is computed using all the individuals in a population. The population mean is a parameter. 3-6 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The sample arithmetic mean, x (pronounced “x-bar”), is computed using sample data. The sample mean is a statistic. 3-7 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. If x1, x2, …, xN are the N observations of a variable from a population, then the population mean, µ, is x1 x2 L xN xi N N 3-8 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. If x1, x2, …, xn are the n observations of a variable from a sample, then the sample mean, , is x x1 x2 L xn x n 3-9 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. x i n EXAMPLE Computing a Population Mean and a Sample Mean The following data represent the travel times (in minutes) to work for all seven employees of a start-up web development company. 23, 36, 23, 18, 5, 26, 43 (a) Compute the population mean of this data. (b) Then take a simple random sample of n = 3 employees. Compute the sample mean. Obtain a second simple random sample of n = 3 employees. Again compute the sample mean. 3-10 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE (a) Computing a Population Mean and a Sample Mean x i N x1 x2 ... x7 7 23 36 23 18 5 26 43 7 174 7 24.9 minutes 3-11 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Computing a Population Mean and a Sample Mean (b) Obtain a simple random sample of size n = 3 from the population of seven employees. Use this simple random sample to determine a sample mean. Find a second simple random sample and determine the sample mean. 1 2 3 4 5 6 7 23, 36, 23, 18, 5, 26, 43 36 23 26 3 28.3 x 3-12 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. 5 36 26 3 22.3 x 3-13 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objective 2 • Determine the Median of a Variable from Raw Data 3-14 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The median of a variable is the value that lies in the middle of the data when arranged in ascending order. We use M to represent the median. 3-15 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Steps in Finding the Median of a Data Set Step 1 Arrange the data in ascending order. Step 2 Determine the number of observations, n. Step 3 Determine the observation in the middle of the data set. 3-16 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Steps in Finding the Median of a Data Set • If the number of observations is odd, then the median is the data value exactly in the middle of the data set. That is, the median is the observation that lies in then (n + 1)/2 position. • If the number of observations is even, then the median is the mean of the two middle observations in the data set. That is, the median is the mean of the observations that lie in the n/2 position and the n/2 + 1 position. 3-17 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Computing a Median of a Data Set with an Odd Number of Observations The following data represent the travel times (in minutes) to work for all seven employees of a start-up web development company. 23, 36, 23, 18, 5, 26, 43 Determine the median of this data. Step 1: 5, 18, 23, 23, 26, 36, 43 Step 2: There are n = 7 observations. n 1 7 1 M = 23 4 Step 3: 2 2 5, 18, 23, 23, 26, 36, 43 3-18 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Computing a Median of a Data Set with an Even Number of Observations Suppose the start-up company hires a new employee. The travel time of the new employee is 70 minutes. Determine the median of the “new” data set. 23, 36, 23, 18, 5, 26, 43, 70 Step 1: 5, 18, 23, 23, 26, 36, 43, 70 Step 2: There are n = 8 observations. 23 26 n 1 8 1 M 24.5 minutes 4.5 Step 3: 2 2 2 5, 18, 23, 23, 26, 36, 43, 70 M 24.5 3-19 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objective 3 • Explain What it Means for a Statistic to Be Resistant 3-20 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Computing a Median of a Data Set with an Even Number of Observations The following data represent the travel times (in minutes) to work for all seven employees of a start-up web development company. 23, 36, 23, 18, 5, 26, 43 Suppose a new employee is hired who has a 130 minute commute. How does this impact the value of the mean and median? Mean before new hire: 24.9 minutes Median before new hire: 23 minutes Mean after new hire: 38 minutes Median after new hire: 24.5 minutes 3-21 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. A numerical summary of data is said to be resistant if extreme values (very large or small) relative to the data do not affect its value substantially. 3-22 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. 3-23 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Describing the Shape of the Distribution The following data represent the asking price of homes for sale in Lincoln, NE. 79,995 99,899 105,200 128,950 130,950 131,800 149,900 151,350 154,900 189,900 203,950 217,500 111,000 120,000 121,700 132,300 134,950 135,500 159,900 163,300 165,000 260,000 284,900 299,900 125,950 126,900 138,500 147,500 174,850 180,000 309,900 349,900 Source: http://www.homeseekers.com 3-24 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Find the mean and median. Use the mean and median to identify the shape of the distribution. Verify your result by drawing a histogram of the data. 3-25 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Find the mean and median. Use the mean and median to identify the shape of the distribution. Verify your result by drawing a histogram of the data. The mean asking price is $168,320 and the median asking price is $148,700. Therefore, we would conjecture that the distribution is skewed right. 3-26 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Asking Price of Homes in Lincoln, NE 12 10 Frequency 8 6 4 2 0 3-27 100000 150000 200000 250000 Asking Price Copyright © 2013, 2010 and 2007 Pearson Education, Inc. 300000 350000 Objective 4 • Determine the Mode of a Variable from Raw Data 3-28 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The mode of a variable is the most frequent observation of the variable that occurs in the data set. A set of data can have no mode, one mode, or more than one mode. If no observation occurs more than once, we say the data have no mode. 3-29 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Finding the Mode of a Data Set The data on the next slide represent the Vice Presidents of the United States and their state of birth. Find the mode. 3-30 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Joe Biden 3-31 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Pennsylvani a 3-32 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The mode is New York. 3-33 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Tally data to determine most frequent observation 3-34 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Section 3.2 Measures of Dispersion Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objectives 1. Determine the range of a variable from raw data 2. Determine the standard deviation of a variable from raw data 3. Determine the variance of a variable from raw data 4. Use the Empirical Rule to describe data that are bell shaped 5. Use Chebyshev’s Inequality to describe any data set 3-36 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. To order food at a McDonald’s restaurant, one must choose from multiple lines, while at Wendy’s Restaurant, one enters a single line. The following data represent the wait time (in minutes) in line for a simple random sample of 30 customers at each restaurant during the lunch hour. For each sample, answer the following: (a) What was the mean wait time? (b) Draw a histogram of each restaurant’s wait time. (c ) Which restaurant’s wait time appears more dispersed? Which line would you prefer to wait in? Why? 3-37 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Wait Time at Wendy’s 1.50 2.53 1.88 3.99 0.90 0.79 1.20 2.94 1.90 1.23 1.01 1.46 1.40 1.00 0.92 1.66 0.89 1.33 1.54 1.09 0.94 0.95 1.20 0.99 1.72 0.67 0.90 0.84 0.35 2.00 Wait Time at McDonald’s 3.50 0.00 1.97 0.00 3.08 3-38 0.00 0.26 0.71 0.28 2.75 0.38 0.14 2.22 0.44 0.36 0.43 0.60 4.54 1.38 3.10 1.82 2.33 0.80 0.92 2.19 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. 3.04 2.54 0.50 1.17 0.23 (a) The mean wait time in each line is 1.39 minutes. 3-39 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. (b) 3-40 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objective 1 • Determine the Range of a Variable from Raw Data 3-41 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The range, R, of a variable is the difference between the largest data value and the smallest data values. That is, Range = R = Largest Data Value – Smallest Data Value 3-42 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Finding the Range of a Set of Data The following data represent the travel times (in minutes) to work for all seven employees of a start-up web development company. 23, 36, 23, 18, 5, 26, 43 Find the range. Range = 43 – 5 = 38 minutes 3-43 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objective 2 • Determine the Standard Deviation of a Variable from Raw Data 3-44 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The population standard deviation of a variable is the square root of the sum of squared deviations about the population mean divided by the number of observations in the population, N. That is, it is the square root of the mean of the squared deviations about the population mean. The population standard deviation is symbolically represented by σ (lowercase Greek sigma). 3-45 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. x1 x2 2 2 L x N 2 N x i 2 N where x1, x2, . . . , xN are the N observations in the population and μ is the population mean. 3-46 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. A formula that is equivalent to the one on the previous slide, called the computational formula, for determining the population standard deviation is x 2 3-47 x 2 i i N N Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Computing a Population Standard Deviation The following data represent the travel times (in minutes) to work for all seven employees of a startup web development company. 23, 36, 23, 18, 5, 26, 43 Compute the population standard deviation of this data. 3-48 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. xi μ xi – μ (xi – μ)2 23 36 23 18 24.85714 24.85714 24.85714 24.85714 -1.85714 11.14286 -1.85714 -6.85714 3.44898 124.1633 3.44898 47.02041 5 26 43 24.85714 24.85714 24.85714 -19.8571 1.142857 18.14286 394.3061 1.306122 329.1633 x i 3-49 x i N 2 2 902.8571 902.8571 11.36 minutes 7 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Using the computational formula, yields the same result. xi (xi )2 23 36 529 1296 23 18 5 26 529 324 25 676 43 1849 Σ xi = 174 Σ (xi)2 = 5228 3-50 x 2 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. x 2 i i N N 174 5228 2 7 7 11.36 minutes The sample standard deviation, s, of a variable is the square root of the sum of squared deviations about the sample mean divided by n – 1, where n is the sample size. x s x 2 i n 1 x1 x x2 x 2 2 L xn x 2 n 1 where x1, x2, . . . , xn are the n observations in the sample and x is the sample mean. 3-51 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. A formula that is equivalent to the one on the previous slide, called the computational formula, for determining the sample standard deviation is x 2 s 3-52 x 2 i i n 1 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. n We call n - 1 the degrees of freedom because the first n - 1 observations have freedom to be whatever value they wish, but the nth value has no freedom. It must be whatever value forces the sum of the deviations about the mean to equal zero. 3-53 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Computing a Sample Standard Deviation Here are the results of a random sample taken from the travel times (in minutes) to work for all seven employees of a start-up web development company: 5, 26, 36 Find the sample standard deviation. 3-54 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. x xi xi x xi x 2 5 26 22.33333 22.33333 -17.333 3.667 300.432889 13.446889 36 22.33333 13.667 186.786889 x x 500.66667 2 i s 3-55 x i x n 1 2 500.66667 15.82 minutes 2 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Using the computational formula, yields the same result. xi (xi )2 5 26 25 676 36 1296 Σ xi = 67 Σ (xi)2 x 2 x 2 i i n 1 n 67 1997 2 = 1997 3 2 15.82 minutes 3-56 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. 3-57 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Comparing Standard Deviations Determine the standard deviation waiting time for Wendy’s and McDonald’s. Which is larger? Why? 3-58 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Wait Time at Wendy’s 1.50 2.53 1.88 3.99 0.90 0.79 1.20 2.94 1.90 1.23 1.01 1.46 1.40 1.00 0.92 1.66 0.89 1.33 1.54 1.09 0.94 0.95 1.20 0.99 1.72 0.67 0.90 0.84 0.35 2.00 Wait Time at McDonald’s 3.50 0.00 1.97 0.00 3.08 3-59 0.00 0.26 0.71 0.28 2.75 0.38 0.14 2.22 0.44 0.36 0.43 0.60 4.54 1.38 3.10 1.82 2.33 0.80 0.92 2.19 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. 3.04 2.54 0.50 1.17 0.23 EXAMPLE Comparing Standard Deviations Sample standard deviation for Wendy’s: 0.738 minutes Sample standard deviation for McDonald’s: 1.265 minutes Recall from earlier that the data is more dispersed for McDonald’s resulting in a larger standard deviation. 3-60 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objective 3 • Determine the Variance of a Variable from Raw Data 3-61 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The variance of a variable is the square of the standard deviation. The population variance is σ2 and the sample variance is s2. 3-62 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Computing a Population Variance The following data represent the travel times (in minutes) to work for all seven employees of a start-up web development company. 23, 36, 23, 18, 5, 26, 43 Compute the population and sample variance of this data. 3-63 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Computing a Population Variance Recall that the population standard deviation (from slide #49) is σ = 11.36 so the population variance is σ2 = 129.05 minutes and that the sample standard deviation (from slide #55) is s = 15.82, so the sample variance is s2 = 250.27 minutes 3-64 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objective 4 • Use the Empirical Rule to Describe Data That Are Bell Shaped 3-65 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The Empirical Rule If a distribution is roughly bell shaped, then • Approximately 68% of the data will lie within 1 standard deviation of the mean. That is, approximately 68% of the data lie between μ – 1σ and μ + 1σ. • Approximately 95% of the data will lie within 2 standard deviations of the mean. That is, approximately 95% of the data lie between μ – 2σ and μ + 2σ. 3-66 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The Empirical Rule If a distribution is roughly bell shaped, then • Approximately 99.7% of the data will lie within 3 standard deviations of the mean. That is, approximately 99.7% of the data lie between μ – 3σ and μ + 3σ. Note: We can also use the Empirical Rule based on sample data with x used in place of μ and s used in place of σ. 3-67 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. 3-68 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Using the Empirical Rule The following data represent the serum HDL cholesterol of the 54 female patients of a family doctor. 41 62 67 60 54 45 3-69 48 75 69 60 54 47 43 77 69 60 55 47 38 58 70 61 56 48 35 82 65 62 56 48 37 39 72 63 56 50 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. 44 85 74 64 57 52 44 55 74 64 58 52 44 54 74 64 59 53 (a) Compute the population mean and standard deviation. (b) Draw a histogram to verify the data is bell-shaped. (c) Determine the percentage of all patients that have serum HDL within 3 standard deviations of the mean according to the Empirical Rule. (d) Determine the percentage of all patients that have serum HDL between 34 and 69.1 according to the Empirical Rule. (e) Determine the actual percentage of patients that have serum HDL between 34 and 69.1. 3-70 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. (a) Using a TI-83 plus graphing calculator, we find 57.4 and 11.7 (b) 3-71 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. 22.3 34.0 45.7 57.4 69.1 80.8 92.5 (c) According to the Empirical Rule, 99.7% of the all patients that have serum HDL within 3 standard deviations of the mean. (d) 13.5% + 34% + 34% = 81.5% of all patients will have a serum HDL between 34.0 and 69.1 according to the Empirical Rule. (e) 45 out of the 54 or 83.3% of the patients have a serum HDL between 34.0 and 69.1. 3-72 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objective 5 • Use Chebyshev’s Inequality to Describe Any Set of Data 3-73 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chebyshev’s Inequality For any data set or distribution, at least 1 1 2 100% of the observations lie within k k standard deviations of the mean, where k is any number greater than 1. That is, at least 1 1 2 100% of the data lie between μ – kσ k and μ + kσ for k > 1. Note: We can also use Chebyshev’s Inequality based on sample data. 3-74 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Using Chebyshev’s Theorem Using the data from the previous example, use Chebyshev’s Theorem to (a) determine the percentage of patients that have serum HDL within 3 standard deviations of the mean. 1 1 2 100% 88.9% 3 (b) determine the actual percentage of patients that have serum HDL between 34 and 80.8 (within 3 SD of mean). 52/54 ≈ 0.96 ≈ 96% 3-75 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Section 3.3 Measures of Central Tendency and Dispersion from Grouped Data Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objectives 1. Approximate the mean of a variable from grouped data 2. Compute the weighted mean 3. Approximate the standard deviation of a variable from grouped data 3-77 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objective 1 • Approximate the Mean of a Variable from Grouped Data 3-78 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. We have discussed how to compute descriptive statistics from raw data, but often the only available data have already been summarized in frequency distributions (grouped data). Although we cannot find exact values of the mean or standard deviation without raw data, we can approximate these measures using the techniques discussed in this section. 3-79 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Approximate the Mean of a Variable from a Frequency Distribution Population Mean Sample Mean xf f xf x f x1 f1 x2 f2 ... xn fn f1 f2 ... fn x1 f1 x2 f2 ... xn fn f1 f2 ... fn i i i i i i where xi is the midpoint or value of the ith class fi is the frequency of the ith class n is the number of classes 3-80 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Approximating the Mean from a Relative Frequency Distribution The National Survey of Student Engagement is a survey that (among other things) asked first year students at liberal arts colleges how much time they spend preparing for class each week. The results from the 2007 survey are summarized below. Approximate the mean number of hours spent preparing for class each week. Hours 0 1-5 6-10 11-15 16-20 21-25 26-30 31-35 Frequency 0 130 250 230 180 100 60 50 Source:http://nsse.iub.edu/NSSE_2007_Annual_Report/docs/withhold/NSSE_2007_Annual_Report.pdf 3-81 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Time Frequency 0 0 1-5 130 6 - 10 250 11 - 15 230 16 - 20 180 21 - 25 100 26 – 30 60 31 – 35 50 fi 1000 3-82 xi xi fi 0 0 3 390 8 2000 13 2990 18 3240 23 2300 28 1680 33 1650 xi fi 14,250 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. xf x f i i i 14, 250 1000 14.25 Objective 2 • Compute the Weighted Mean 3-83 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The weighted mean, xw , of a variable is found by multiplying each value of the variable by its corresponding weight, adding these products, and dividing this sum by the sum of the weights. It can be expressed using the formula xw wx w i i i w1 x1 w2 x2 ... wn xn w1 w2 ... wn where w is the weight of the ith observation xi is the value of the ith observation 3-84 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Computed a Weighted Mean Bob goes to the “Buy the Weigh” Nut store and creates his own bridge mix. He combines 1 pound of raisins, 2 pounds of chocolate covered peanuts, and 1.5 pounds of cashews. The raisins cost $1.25 per pound, the chocolate covered peanuts cost $3.25 per pound, and the cashews cost $5.40 per pound. What is the cost per pound of this mix. 1($1.25) 2($3.25) 1.5($5.40) xw 1 2 1.5 $15.85 $3.52 4.5 3-85 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objective 3 • Approximate the Standard Deviation of a Variable from Grouped Data 3-86 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Approximate the Standard Deviation of a Variable from a Frequency Distribution Population Standard Deviation x f 2 i fi Sample Standard Deviation x x f f 1 2 s i i i i where xi is the midpoint or value of the ith class fi is the frequency of the ith class 3-87 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. An algebraically equivalent formula for the population standard deviation is x f f 2 x i 2 i i f f i 3-88 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. i EXAMPLE Approximating the Mean from a Relative Frequency Distribution The National Survey of Student Engagement is a survey that (among other things) asked first year students at liberal arts colleges how much time they spend preparing for class each week. The results from the 2007 survey are summarized below. Approximate the standard deviation number of hours spent preparing for class each week. Hours 0 1-5 6-10 11-15 16-20 21-25 26-30 31-35 Frequency 0 130 250 230 180 100 60 50 Source:http://nsse.iub.edu/NSSE_2007_Annual_Report/docs/withhold/NSSE_2007_Annual_Report.pdf 3-89 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Time 0 1-5 6 - 10 11 - 15 16 - 20 21 - 25 26 – 30 31 – 35 3-90 Frequ ency xi 0 0 130 3 250 8 230 13 180 18 100 23 60 28 50 33 fi 1000 xi x 0 –11.25 –6.25 –1.25 3.75 8.75 13.75 18.75 xi x f i s 2 x i x f i 0 fi 1 16,453.125 65,687.5 9765.625 1000 1 65.8 359.375 2531.25 7656.25 s s 2 65.8 11,343.75 8.1 hours 17,578.125 2 xi x fi 65,687.5 2 2 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Section 3.4 Measures of Position and Outliers Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objectives 1. 2. 3. 4. Determine and interpret z-scores Interpret percentiles Determine and interpret quartiles Determine and interpret the interquartile range 5. Check a set of data for outliers 3-92 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objective 1 • 3-93 Determine and Interpret z-scores Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The z-score represents the distance that a data value is from the mean in terms of the number of standard deviations. We find it by subtracting the mean from the data value and dividing this result by the standard deviation. There is both a population z-score and a sample z-score: Population z-score Sample z-score x xx z z s The z-score is unitless. It has mean 0 and standard deviation 1. 3-94 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Using Z-Scores The mean height of males 20 years or older is 69.1 inches with a standard deviation of 2.8 inches. The mean height of females 20 years or older is 63.7 inches with a standard deviation of 2.7 inches. Data is based on information obtained from National Health and Examination Survey. Who is relatively taller? Kevin Garnett whose height is 83 inches or Candace Parker whose height is 76 inches 3-95 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. 83 69.1 zkg 2.8 4.96 76 63.7 zcp 2.7 4.56 Kevin Garnett’s height is 4.96 standard deviations above the mean. Candace Parker’s height is 4.56 standard deviations above the mean. Kevin Garnett is relatively taller. 3-96 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objective 2 • Interpret Percentiles 3-97 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The kth percentile, denoted, Pk , of a set of data is a value such that k percent of the observations are less than or equal to the value. 3-98 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Interpret a Percentile The Graduate Record Examination (GRE) is a test required for admission to many U.S. graduate schools. The University of Pittsburgh Graduate School of Public Health requires a GRE score no less than the 70th percentile for admission into their Human Genetics MPH or MS program. (Source: http://www.publichealth.pitt.edu/interior.php?pageID=1 01.) Interpret this admissions requirement. 3-99 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Interpret a Percentile In general, the 70th percentile is the score such that 70% of the individuals who took the exam scored worse, and 30% of the individuals scores better. In order to be admitted to this program, an applicant must score as high or higher than 70% of the people who take the GRE. Put another way, the individual’s score must be in the top 30%. 3-100 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objective 3 • Determine and Interpret Quartiles 3-101 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Quartiles divide data sets into fourths, or four equal parts. • The 1st quartile, denoted Q1, divides the bottom 25% the data from the top 75%. Therefore, the 1st quartile is equivalent to the 25th percentile. • The 2nd quartile divides the bottom 50% of the data from the top 50% of the data, so that the 2nd quartile is equivalent to the 50th percentile, which is equivalent to the median. • The 3rd quartile divides the bottom 75% of the data from the top 25% of the data, so that the 3rd quartile is equivalent to the 75th percentile. 3-102 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Finding Quartiles Step 1 Arrange the data in ascending order. Step 2 Determine the median, M, or second quartile, Q2 . Step 3 Divide the data set into halves: the observations below (to the left of) M and the observations above M. The first quartile, Q1 , is the median of the bottom half, and the third quartile, Q3 , is the median of the top half. 3-103 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Finding and Interpreting Quartiles A group of Brigham Young University—Idaho students (Matthew Herring, Nathan Spencer, Mark Walker, and Mark Steiner) collected data on the speed of vehicles traveling through a construction zone on a state highway, where the posted speed was 25 mph. The recorded speed of 14 randomly selected vehicles is given below: 20, 24, 27, 28, 29, 30, 32, 33, 34, 36, 38, 39, 40, 40 Find and interpret the quartiles for speed in the construction zone. 3-104 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Finding and Interpreting Quartiles Step 1: The data is already in ascending order. Step 2: There are n = 14 observations, so the median, or second quartile, Q2, is the mean of the 7th and 8th observations. Therefore, M = 32.5. Step 3: The median of the bottom half of the data is the first quartile, Q1. 20, 24, 27, 28, 29, 30, 32 The median of these seven observations is 28. Therefore, Q1 = 28. The median of the top half of the data is the third quartile, Q3. Therefore, Q3 = 38. 3-105 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Interpretation: • 25% of the speeds are less than or equal to the first quartile, 28 miles per hour, and 75% of the speeds are greater than 28 miles per hour. • 50% of the speeds are less than or equal to the second quartile, 32.5 miles per hour, and 50% of the speeds are greater than 32.5 miles per hour. • 75% of the speeds are less than or equal to the third quartile, 38 miles per hour, and 25% of the speeds are greater than 38 miles per hour. 3-106 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objective 4 • Determine and Interpret the Interquartile Range 3-107 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The interquartile range, IQR, is the range of the middle 50% of the observations in a data set. That is, the IQR is the difference between the third and first quartiles and is found using the formula IQR = Q3 – Q1 3-108 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Determining and Interpreting the Interquartile Range Determine and interpret the interquartile range of the speed data. Q1 = 28 Q3 = 38 IQR Q3 Q1 38 28 10 The range of the middle 50% of the speed of cars traveling through the construction zone is 10 miles per hour. 3-109 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Suppose a 15th car travels through the construction zone at 100 miles per hour. How does this value impact the mean, median, standard deviation, and interquartile range? Mean Median Standard deviation IQR 3-110 Without 15th car 32.1 mph 32.5 mph 6.2 mph 10 mph Copyright © 2013, 2010 and 2007 Pearson Education, Inc. With 15th car 36.7 mph 33 mph 18.5 mph 11 mph Objective 5 • Check a Set of Data for Outliers 3-111 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Checking for Outliers by Using Quartiles Step 1 Determine the first and third quartiles of the data. Step 2 Compute the interquartile range. Step 3 Determine the fences. Fences serve as cutoff points for determining outliers. Lower Fence = Q1 – 1.5(IQR) Upper Fence = Q3 + 1.5(IQR) Step 4 If a data value is less than the lower fence or greater than the upper fence, it is considered an outlier. 3-112 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Determining and Interpreting the Interquartile Range Check the speed data for outliers. Step 1: The first and third quartiles are Q1 = 28 mph and Q3 = 38 mph. Step 2: The interquartile range is 10 mph. Step 3: The fences are Lower Fence = Q1 – 1.5(IQR) = 28 – 1.5(10) = 13 mph Upper Fence = Q3 + 1.5(IQR) = 38 + 1.5(10) = 53 mph Step 4: There are no values less than 13 mph or greater than 53 mph. Therefore, there are no outliers. 3-113 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Section 3.5 The Five-Number Summary and Boxplots Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objectives 1. Compute the five-number summary 2. Draw and interpret boxplots 3-115 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Objective 1 • 3-116 Compute the Five-Number Summary Copyright © 2013, 2010 and 2007 Pearson Education, Inc. The five-number summary of a set of data consists of the smallest data value, Q1, the median, Q3, and the largest data value. We organize the five-number summary as follows: 3-117 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Obtaining the Five-Number Summary Every six months, the United States Federal Reserve Board conducts a survey of credit card plans in the U.S. The following data are the interest rates charged by 10 credit card issuers randomly selected for the July 2005 survey. Determine the five-number summary of the data. 3-118 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Obtaining the Five-Number Summary Institution Pulaski Bank and Trust Company Rainier Pacific Savings Bank Wells Fargo Bank NA Firstbank of Colorado Lafayette Ambassador Bank Infibank United Bank, Inc. First National Bank of The Mid-Cities Bank of Louisiana Bar Harbor Bank and Trust Company Source: http://www.federalreserve.gov/pubs/SHOP/survey.htm 3-119 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Rate 6.5% 12.0% 14.4% 14.4% 14.3% 13.0% 13.3% 13.9% 9.9% 14.5% EXAMPLE Obtaining the Five-Number Summary First, we write the data in ascending order: 6.5%, 9.9%, 12.0%, 13.0%, 13.3%, 13.9%, 14.3%, 14.4%, 14.4%, 14.5% The smallest number is 6.5%. The largest number is 14.5%. The first quartile is 12.0%. The second quartile is 13.6%. The third quartile is 14.4%. Five-number Summary: 6.5% 3-120 12.0% 13.6% 14.4% Copyright © 2013, 2010 and 2007 Pearson Education, Inc. 14.5% Objective 2 • Draw and Interpret Boxplots 3-121 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Drawing a Boxplot Step 1 Determine the lower and upper fences. Lower Fence = Q1 – 1.5(IQR) Upper Fence = Q3 + 1.5(IQR) where IQR = Q3 – Q1 Step 2 Draw a number line long enough to include the maximum and minimum values. Insert vertical lines at Q1, M, and Q3. Enclose these vertical lines in a box. Step 3 Label the lower and upper fences. 3-122 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Drawing a Boxplot Step 4 Draw a line from Q1 to the smallest data value that is larger than the lower fence. Draw a line from Q3 to the largest data value that is smaller than the upper fence. These lines are called whiskers. Step 5 Any data values less than the lower fence or greater than the upper fence are outliers and are marked with an asterisk (*). 3-123 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Obtaining the Five-Number Summary Every six months, the United States Federal Reserve Board conducts a survey of credit card plans in the U.S. The following data are the interest rates charged by 10 credit card issuers randomly selected for the July 2005 survey. Construct a boxplot of the data. 3-124 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. EXAMPLE Obtaining the Five-Number Summary Institution Pulaski Bank and Trust Company Rainier Pacific Savings Bank Wells Fargo Bank NA Firstbank of Colorado Lafayette Ambassador Bank Infibank United Bank, Inc. First National Bank of The Mid-Cities Bank of Louisiana Bar Harbor Bank and Trust Company Source: http://www.federalreserve.gov/pubs/SHOP/survey.htm 3-125 Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Rate 6.5% 12.0% 14.4% 14.4% 14.3% 13.0% 13.3% 13.9% 9.9% 14.5% Step 1: The interquartile range (IQR) is 14.4% - 12% = 2.4%. The lower and upper fences are: Lower Fence = Q1 – 1.5(IQR) = 12 – 1.5(2.4) = 8.4% Upper Fence = Q3 + 1.5(IQR) = 14.4 + 1.5(2.4) = 18.0% Step 2: * 3-126 [ Copyright © 2013, 2010 and 2007 Pearson Education, Inc. ] Use a boxplot and quartiles to describe the shape of a distribution. The interest rate boxplot indicates that the distribution is skewed left. 3-127 Copyright © 2013, 2010 and 2007 Pearson Education, Inc.