Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Introduction to Atoms Beta Pod Science Interesting Facts Democritus: was a Greek philosopher and leading advocate of the theory that all phenomena in nature could be understood in terms of the movements of particles called atoms (from the Greek word atmos, meaning “indivisible”). The views of Democritus sharply contrasted those of Aristotle and others, who held to the theory that all matter could be reduced to a combination of four elements: earth, water, air, and fire. From Greek to Modern Atomic Theory Democritus and other Greek philosophers laid the groundwork for the modern atomic theory, but it was not until the 16th and 17th centuries that interest in atoms and atomic structure was renewed. During that time, the work of Sir Isaac Newton, Robert Boyle, and Pierre Gassendi helped further the development of the atomic theory. In the 19th Century, experiments by John Dalton, Amedeo Avogadro, James Clerk Maxwell, and Rudolf Clausius began to reveal the nature and structure of atoms. From Greek to Modern Atomic Theory Cont. Sir Joseph John Thomson’s discovery of electrons in 1897 and his later research on protons and gases indicated that atoms were not the smallest indivisible units of matter, as previously thought. Thomson showed that subatomic particles with either a negative or positive charge form at least part of the structure of an atom. Thomson won the Nobel Prize in physics in 1906. While Thomson was director of the Cavendish Laboratory at Cambridge University in Cambridge England, one of his graduate students was Ernest Rutherford. Rutherford went on to win the Nobel Prize in chemistry in 1908 for his work on radioactivity. The beginning of Atomic Theory Democritus thought you could keep cutting something in half until at some point it couldn’t be cut anymore…the atom. The atom comes from the Greek word “atomos” meaning “not able to be divided.” Atom: the smallest particle into which an element can be divided and still be the same substance. John Dalton By the 1700’s, scientists knew elements combined in certain proportions based on mass to form compounds. John Dalton wanted to know why. In 1803 he published his theory stating: All substances are made of atoms. Atoms are small particles that cannot be created, divided, or destroyed. Atoms of the same element are exactly alike, and atoms of different elements are different. Atoms join with other atoms to make new substances. He was mostly right… but not completely. J.J Thomson J.J. was the first to find a mistake in Dalton’s theory. He found that there were even smaller particles inside the atom. Which means that atoms can be divided into even smaller parts. Thomson used a “cathode-ray tube” to discover electrons. Electrons: Negatively charged particles. Thompson discovered electrons Thomson thought these particles were arranged like a round scoop of chocolate chip ice cream where the electrons would be like the chocolate chips arranged throughout the scoop. Ernest Rutherford Rutherford tested Thomson’s theory. He aimed a beam of positively charged atoms at a thin sheet of gold foil. Rutherford put a special coating behind the foil which glowed when hit by the positively charged particles. This way he could see where the positively charged particles went after hitting the gold. Rutherford expected the particles to pass straight through the gold showing that the particles were indeed like a mass of “chocolate chip icecream” but he found that some deflected and hit other areas of the foil. This event proved that Thomson’s theory of how atoms were arranged was wrong. Rutherford realized that atoms must be considered mostly empty space with a tiny part made of highly dense matter. The Nucleus Rutherford revised the atomic theory. Rutherford proposed that in the center of the atom is a nucleus. Nucleus: a tiny, extremely dense, positively charged area of an atom made of protons and neutrons. Rutherford calculated that a nucleus was 100,000 times smaller than the diameter of the gold atom. Bohr’s Electron Levels In 1913, Niels Bohr, a Danish scientist who worked with Rutherford, studied the way atoms react to light. Bohr’s results concluded that electrons move around the nucleus in certain paths, or energy levels. Bohr’s theory compared the levels to a ladder… you can stand on the rungs of a ladder, but not between the rungs. Bohr’s theory wasn’t completely correct. Modern Atomic Theory Erwin Schrodinger and Werner Heisenberg further explained the nature of electrons in the atom. They found that electrons do not travel in specific paths as Bohr suggested. In fact, they cannot even be predicted. Electrons only have areas where they are “likely” to be found. Electron Clouds: Regions where electrons are “likely” to be found. The Electron Cloud model was presented by Erwin Shroedinger. The cloud-like region is an estimate where the electron is likely to be found. It can't pinpoint where an electron is, but can identify where it ought ought to be. The electron leaves a dot where it was. This creates a cloud and forms the electron cloud model.