Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
TECHNICAL GUIDE No.1 Estimation of Future Design Rainstorm under the Climate Change Scenario in Peninsular Malaysia Research Centre for Water Resources & Climate Change National Hydraulic Research Institute of Malaysia Ministry of Natural Resources & Environment Feb. 17, 2013 NAWMI, JPS Part 1 : HP1 (2010) Part 2 : NAHRIM Tech. Guide No.1 Chap. 1 – 1.2 (problem state. & 1.3 (objective) Chap. 2 – Approach & Methodology Chap. 3 – Results & Findings Part 3 : Chap. 4 - Worked Example Part 1 : HP1 (2010) -1/3 TASK 1 (T1) Data Mining & Assembly TASK 2 (T2) Choice of Rainfall Freq. Model TASK 3 (T3) TASK 4 (T4) Choice of Prob. Distribution Method of Parameter Estimator OUTLIER CHECKING Data: PD Series & AM Series PD Series: Low & High Return Period 3P-GPA or 2P-GPA/EXP L-MOMENTS (LMOM) AM Series: High Return Period (>1yr) 3P-GEV or 2P-EV1 METHODS OF MOMENT (MOM) OPTIONAL for UNGAUGED ONE-STEP LEAST SQUARE METHOD Part 1 : HP1 (2010) -2/3 TASK 1 (T1) TASK 2 (T2) TASK 3 (T3) TASK 4 (T4) GOOD PERFORMANCE : BIAS RANDOM NUMBER ROBUSTNESS ANALYSIS : BIAS & RMSE ACCURACY : ROOT MEAN SQUARE ERROR BEST FIT/ BEST FIT/ APPROPRIATE APPROPRIATE MODEL MODEL 3P-GPA/LMOM 3P-GPA/LMOM 3P-GEV/LMOM 3P-GEV/LMOM 2P-GPA/EXP/LMOM 2P-GPA/EXP/LMOM 2P-EV1/LMOM 2P-EV1/LMOM 2P-EV1/MOM 2P-EV1/MOM 3P-GEV/OS-LSM 3P-GEV/OS-LSM TASK 5 (T5) Estimation the Estimationofof Design Storm of Low Design andthe High Return Period Rainstorm TASK 6 (T6) Construction and Math. of atFormulation Formulation of site IDF Curve at-Site&IDF & UNGAUGED SITE Ungauged Site T7 T7 T8 T8 T9 Part 1 : HP1 (2010) -3/3 Total Nos. of Raingauges Kauto 188 Dauto Rauto 627 Pauto Tauto Aauto Cauto Bauto Wauto Nauto Jauto Mauto 1000.0 Rainfall Intensity Duration Frequency Curve Site 3117070@Pusat Penyelidikan JPS Ampang, Selangor Rainfall Intensity (mm/hr) 100.0 I 10.0 66.8094T 0.1481 100 50 20 10 5 2 d 0.1559 Duration (hr) 0.25 0.5 1 3 6 12 24 48 72 0.8372 2 155.1 103.8 64.6 27.9 15.9 9.0 5.1 2.8 2.0 5 177.7 118.9 74.0 31.9 18.2 10.3 5.8 3.3 2.3 Yearly Return Period 10 20 196.9 218.2 131.8 146.0 82.0 90.8 35.4 39.2 20.2 22.4 11.4 12.7 6.4 7.1 3.6 4.0 2.6 2.9 50 249.9 167.2 104.1 44.9 25.7 14.5 8.2 4.6 3.3 100 276.9 185.3 115.3 49.7 28.4 16.1 9.0 5.1 3.6 1.0 0.1 1 Duration (hr) 10 100 Part 1 : HP1 (2010) Part 2 : NAHRIM Tech. Guide No.1 Chap. 1 – 1.2 (problem state. & 1.3 (objective) Chap. 2 – Approach & Methodology Chap. 3 – Results & Findings Part 3 : Chap. 4 - Worked Example Part 2 : NAHRIM Tech. Guide No.1 1.1 Background: Climate Change Scenario A study that has been carried out indicate a possible increase in inter-annual and intra-seasonal variability with increased hydrologic extremes (higher high flows and lower low flows) at various northern watersheds in the future (2025-2050); The probability of increase in rainfall would lead to a raise in river flow of between 11% and 47% for Peninsular Malaysia with low flow reductions ranging from 31% to 93% for the central and southern regions (NAHRIM, 2006); Parts of Malaysia may experience a decrease in return for extreme precipitation events and the possibility of more frequent floods as well as drought 1.2 Problem Statement HYDROLOGIC & HYDRAULIC DESIGN To estimate water surface profile, platform level, size of hydraulic structure corresponding to any return period of occurrence or level of protection AVERAGE RECURRENCE INTERVAL (RETURN PERIOD) Sg Guntung [13.86km Data units/pixel: Horizontal=8.0days Vertical=0.84mm Sg Cakah Dua [11.00km] Kg Che Salmah Kg Guntung Luar Kg K Guntung Sg Setiu [5.48km] Sg Pancur Merah [10.40km] A A 710630:0800 8001 8601 9201 9801 YYMM A site 5328044 KG. SG. TONG at TERENGGANU Rain mm/day (Total=94149) Sg Setiu [8.6km] Bdr Permaisuri Sg Pelung [9.3km] Sg Setiu [11.11km] Data units/pixel: Horizontal=5.00days Vertical=0.021m Start Time: 710630 080000 Finish Time: 1050131 090000 Lower Value: Upper Value: 0.0 410.0 Sg Ima Putih [12.38km] Sg Tarum [7.97km] Kg Seladang Sg Setiu [14.55km] Sg Lirim [8.70km] A A 810920:123001 8701 9001 9301 9601 9901 A site 5229436 SG. NERUS at KG. BUKIT,TERENGGANU Stage m Start Time: 810920 123001 Finish Time: 1040427 123700 Lower Value: Upper Value: Sg Tarum [8.7km] Sg Lirim [13.16km] Sg Setiu [9.48km] 0201 YYYMM Sg Setiu [4.34km] Sg Tarum 9.5km] 6.00 16.00 HYDROLOGY MODELING HYDROMETEOROLOGY DATA HYDRAULIC MODELING WATERSHED – “MEDIUM SYSTEM” HYDRAULIC STRUCTURES 1.3 Objective of Technical Guideline To assist engineers, hydrologists and decision makers in designing, planning and developing water-related infrastructure under changing climatic conditions. To introduce an approach of quantifying the scale of climatic change to surface water systems. The main purpose of this guideline is to derive climate change factor (CCF) CCF – defined as the ratio of the design rainfall for each of the future periods (time horizons) to the control periods of historical rainfall) Chap. 2: Approach & Methodology Part 1 IDF formulation Obtain observed annual maximum rainfall over various durations STEP 1: Obtain downscaled climate data projection Part 2 Derivation of CCF Review, update & reformulate IDF relationships (1970 – 2007) STEP 2: Bias correction of downscaled data Statistical Downscaling Model: 18 GCMs (2046-2065) STEP 3: Derivation of CCF Dynamic Downscaling Model: RegHCM-PM (2025-2034, 2041-2050) STEP 4: Disaggregation of 1-day design rainfall to short duration and reformulation of IDF Curves STEP 5: Rainfall-runoff modelling: Obtain future Qp 2.3.2 - Derivation of Climate Change Factor (Pg.13) defined as a ratio of the design rainfall for each of the future periods to the control periods (historical) for each time horizon. Eq. 28 (Pg.17) STEP 1: Work out current (1971-2007) return levels of all rainfall events with return periods between 2 and 200-years from observed database rainfall data using GEV and EV1. STEP 2: Identify current return levels for 7 return periods (1 in 5, 10, 20, 25, 50, 100 and 200-year events) from STEP 1. STEP 3: Repeat STEP 1 using climate model data for the period 1981-2000 and 1984-1993 (control period) from the 18 GCMs and RegHCM-PM respectively. STEP 4: Repeat STEP 3 using climate model data for the periods 2025-2050 (RegHCM-PM) & 2046-2065 (GCMs) STEP 5: Calculate climate change load factors by dividing the return level for each of the future periods (STEP 4) by the return level for the control period (STEP 3), again for all of the return periods. 2.4 Incorporation of CCF and Historical at-Site IDF (Pg.14) 2.4.1 & 2.4.2 2.4.3 Eq. 30 (Pg.17) Eq. 29 (Pg.17) Chap. 3: Results & Findings Table 3.1: At site 1 day Climate Change Factor (CCF) corresponding to Return Period in Peninsular Malaysia (Pg. 20-23) Climate Change Factor, CCF State Kedah No. Station ID Station Name Return Period, T 2 5 10 20 25 50 100 200 1 6207032 Ampang Pedu 1.05 1.08 1.09 1.10 1.11 1.12 1.13 1.13 2 5507076 Bt.27, Jln Baling 1.12 1.16 1.18 1.20 1.21 1.22 1.24 1.25 3 5808001 Bt.61, Jln Baling 1.08 1.13 1.16 1.18 1.19 1.21 1.22 1.24 4 5704055 Kedah Peak 1.14 1.20 1.24 1.26 1.27 1.29 1.31 1.33 5 5806066 Klinik Jeniang 1.15 1.17 1.18 1.19 1.20 1.20 1.21 1.22 6 6108001 Komp. Rmh Muda 1.15 1.24 1.29 1.33 1.34 1.38 1.41 1.44 7 6206035 Kuala Nerang 0.97 1.07 1.13 1.17 1.18 1.22 1.25 1.28 8 6306031 Padang Sanai 1.08 1.09 1.11 1.14 1.15 1.18 1.23 1.28 9 6103047 JPS Alor Setar 1.07 1.17 1.22 1.26 1.28 1.32 1.35 1.38 Table 3.2: At site 1-day Future IDF Parameter (λ’) corresponding to Return Period in Peninsular Malaysia (Pg. 23-26) 1-day λ' State Kedah No. Station ID Station Name Return Period, T 2 5 10 20 25 50 100 200 1 6207032 Ampang Pedu 69.47 71.27 72.22 73.00 73.22 73.86 74.41 74.90 2 5507076 Bt.27, Jln Baling 58.55 60.64 61.84 62.86 63.16 64.04 64.84 65.56 3 5808001 Bt.61, Jln Baling 51.41 53.74 55.00 56.06 56.37 57.24 58.02 58.71 4 5704055 Kedah Peak 92.90 98.19 100.91 103.08 103.70 105.44 106.93 108.24 5 5806066 Klinik Jeniang 68.59 69.98 70.71 71.30 71.47 71.95 72.37 72.73 6 6108001 Komp Rmh Muda 60.25 64.83 67.41 69.61 70.27 72.14 73.83 75.37 7 6206035 Kuala Nerang 53.34 58.78 61.68 64.07 64.76 66.71 68.42 69.94 8 6306031 Padang Sanai 65.37 65.71 66.84 68.48 69.10 71.32 73.94 76.97 9 6103047 JPS Alor Setar 69.44 75.61 79.04 81.94 82.79 85.23 87.41 89.38 IDF Parameters – Baseline (Historical) & Future State Kedah Station ID Station Name Derived Parameters λ λ' κ θ η 5507076 Bt. 27, Jalan Baling 52.40 64.84 0.172 0.104 0.788 5704055 Kedah Peak 81.58 106.93 0.200 0.437 0.719 5806066 Klinik Jeniang 59.79 72.37 0.165 0.203 0.791 5808001 Bt. 61, Jalan Baling 47.50 58.02 0.183 0.079 0.752 6103047 Setor JPS Alor Setar 64.83 87.41 0.168 0.346 0.800 6108001 Kompleks Rumah Muda 52.34 73.83 0.173 0.120 0.792 6206035 Kuala Nerang 54.85 68.42 0.174 0.250 0.810 6207032 Ampang Padu 66.10 74.41 0.177 0.284 0.842 6306031 Padang Sanai 60.33 73.94 0.193 0.249 0.829 3.3 1 Day Climate Change Factor For Ungauged Sites (Pg. 27) Fig. 3.1 – 3.8 (Pg. 28-32) Figure 3.1: 1 Day Climate Change Factor (CCF) – 2yrs ARI Figure 3.2: 1 Day Climate Change Factor (CCF) – 5yrs ARI Figure 3.3: 1 Day Climate Change Factor (CCF) – 10yrs ARI Figure 3.4: 1 Day Climate Change Factor (CCF) – 20yrs ARI Figure 3.5: 1 Day Climate Change Factor (CCF) – 25yrs ARI Figure 3.6: 1 Day Climate Change Factor (CCF) – 50yrs ARI Figure 3.7: 1 Day Climate Change Factor (CCF) – 100yrs ARI Figure 3.8: 1 Day Climate Change Factor (CCF) – 200yrs ARI 3.4 LIMITATIONS OF GUIDELINE The climate projection data used in the calculation of climate change factor in this study are averaged from 18 chosen GCMs. For this study, the emission scenario A1B from IPCC SRES is assumed. The A1B is a scenario in which the usage of all energy sources is evenly balanced. The dataset used in this analysis covers only two future periods from 2025 to 2050 and from 2046 to 2065. The climate change factors, CCF and modified λ, λ’ in this guideline are calculated for 1 day (24 hours) rainfall duration only. Part 1 : HP1 (2010) Part 2 : NAHRIM Tech. Guide No.1 Chap. 1 – 1.2 (problem state. & 1.3 (objective) Chap. 2 – Approach & Methodology Chap. 3 – Results & Findings Part 3 : Chap. 4 - Worked Example Chap. 4 – Worked Example (Pg.37-52) Example 6: DESIGNED FLOOD PEAKS – SG KEDAH Peak Discharges (Qp) 100-years ARI Item Climate Time Change Horizon Factor (CCF) 1-Day Design Rainfall (mm) Percentage Climate Climate Increase of Change Change Flood Scenario Scenario Magnitude Flood Flood (%) Magnitude Magnitude, Increment Qp (m3/s) (m3/s) Baseline - - 241 2048 - - 1 2020 1.05 245 2111 63 3.1 2 2030 1.09 257 2268 220 10.7 3 2040 1.14 268 2430 382 18.7 4 2050 1.19 280 2602 554 27.1 5 2060 1.25 293 2785 737 36.0 2.50 1.50 2.00 1.40 Increment rate of flow 737m3/s [598.1] 1.50 1.30 554m3/s [449.5] 1.00 1.20 382m3/s[310.5] 0.50 1.10 Increment rate of rainfall 220m3/s [179] 0.00 2020 2025 2030 2035 2040 2045 2050 Projection Year (2020 -2070) 2055 2060 2065 1.00 2070 Climate Change Factor Relative Temperature (°C) Projected Daily Annual Mean Surface Temperature for Malaysia & Climate Change Factor of Sungai Kedah ANALYSIS OUTCOME: WATER RESOURCES SECTOR FLOOD MAPS– SG KEDAH Time horizon Area for flood depth (km2) 0.01 0.5 >1.2 m Sum 0.5 m 1.2 m Baseline 50.50 41.55 35.57 127.62 2020 51.24 43.91 37.92 133.06 2030 51.01 45.18 39.90 136.10 2040 50.51 46.86 42.00 139.36 2050 49.13 49.17 44.20 142.50 2060 48.16 50.00 46.95 145.10 terima kasih TECH GUIDE No.2 – The Design Guide for Rainwater Harvesting System 25 Feb. 2014