Download General Anesthetics - Department of Pharmacology

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Neuromuscular Blocking Drugs
Michael H. Ossipov, Ph.D.
Department of Pharmacology
Neuromuscular blocking drugs
• Extract of vines (Strychnos toxifera; also
Chondrodendron species)
• Used by indegenous peoples of Amazon basin in
poison arrows (not orally active, so food is safe to
eat)
• Brought to Europe by Sir Walter Raleigh, others
• Curare-type drugs: Tubocurare (bamboo tubes),
Gourd curare, Pot curare
• Brody (1811) showed curare is not lethal is animal is
ventilated
• Harley (1850) used curare for tetanus and strychnine
poisoning
• Harold King (1935) isolates d-tubocurarine from a
museum sample – determines structure.
Neuromuscular blocking drugs
• Block synaptic transmission at the
neuromuscular junction
• Affect synaptic transmission only at skeletal
muscle
– Does not affect nerve transmission, action
potential generation
• Act at nicotinic acetylcholine receptor NII
Neuromuscular blocking drugs
(CH3)3N+-(CH2)6-N+(CH3)3
Hexamethonium
(ganglionic)
(CH3)3N+-(CH2)10-N+(CH3)3
Decamethonium
(motor endplate)
Neuromuscular blocking drugs
• Acetylcholine is released from motor neurons in
discrete quanta
• Causes “all-or-none” rapid opening of Na+/K+ channels
(duration 1 msec)
• Development of miniature end-plate potentials (mEPP)
• Summate to form EPP and muscle action potential –
results in muscle contraction
• ACh is rapidly hydrolyzed by acetylcholinesterase; no
rebinding to receptor occurs unless AChE inhibitor is
present
Non-depolarizing Neuromuscular blocking drugs
• Competetive antagonist of the nicotinic 2
receptor
• Blocks ACh from acting at motor end-plate
– Reduction to 70% of initial EPP needed to
prevent muscle action potential
• Muscle is insensitive to added Ach, but
reactive to K+ or electrical current
• AChE inhibitors increase presence of ACh,
shifting equilibrium to favor displacing the
antagonist from motor end-plate
Nondepolarizing drugs: Metabolism
• Important in patients with impaired organ
clearance or plasmacholinesterase deficiency
• Hepatic metabolism and renal excretion (most
common)
• Atracurium, cis-atracurium: nonenzymatic
(Hoffman elimination)
• Mivacurium: plasma cholinesterase
Depolarizing Neuromuscular blocking drugs
• Succinylcholine, decamethonium
• Bind to motor end-plate and cause
immediate and persistent depolarization
• Initial contraction, fasciculations
• Muscle is then in a depolarized, refractory
state
• Desensitization of Ach receptors
• Insensitive to K+, electrical stimulation
• Paralyzes skeletal more than respiratory
muscles
Succinlycholine: Pharmacokinetics
• Fast onset (1 min)
• Short duration of action (2 to 3 min)
• Rapidly hydrolyzed by plasma
cholinesterase
Succinlycholine: Clinical uses
• Tracheal intubation
• Indicated when rapid onset is desired
(patient with a full stomach)
• Indicated when a short duration is desired
(potentially difficult airway)
Succinylcholine: Side effects
• Prolonged neuromuscular blockade
– In patients lacking pseudocholinesterase
• Treat by maintaining ventilation until it wears off hours
later
Succinylcholine: Phase II block
•
•
•
•
Prolonged exposure to succinlycholine
Features of nondepolarizing blockade
May take several hours to resolve
May occur in patients unable to metabolize
succinylcholine (cholinesterase defects,
inhibitors)
• Harmless if recognized
Acetylcholinesterase inhibitors
• Acetylcholinesterase inhibitors have
muscarinic effects
–
–
–
–
Bronchospasm
Urination
Intestinal cramping
Bradycardia
• Prevented by muscarinic blocking agent
Selection of muscle relexant:
• Onset and duration
• Route of metabolism and elimination
Monitoring NM blockade
• Stimulate nerve
• Measure motor
response (twitch)
• Depolarizing
neuromuscular
blocker
– Strength of twitch
• Nondepolarizing
neuromuscular
blocker
– Strength of twitch
– Decrease in strength
of twitch with
repeated stimulation