Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
E-science grid facility for Europe and Latin America Heart Simulator FISIOCOMP - Laboratory of Computational Physiology Computer Science Department Universidade Federal de Juiz de Fora (UFJF) Juiz de Fora - MG - Brazil Gustavo Miranda Teixeira Ricardo Silva Campos www.eu-eela.org E-science grid facility for Europe and Latin America Group Professors Prof. Rodrigo Weber dos Santos, Dr. Math. * Prof. Marcelo Lobosco, Dr. Comp. Sci. * Prof. Ciro Barros Barbosa, Dr. Comp. Sci. Prof. Rubens Oliveira, Dr. Eng. Prof. Luis Paulo Barra, Dr. Eng. Prof. Elson Toledo, Dr. Eng. Master Students Carolina Xavier Ronan M. Amorim Franciane Peters Undergraduate Students Caroline Costa Gustavo Miranda * Ricardo Campos * Guilherme Montebrune Former Master Students Rafael Sachetto Oliveira Fernando Otaviano Campos Bernardo Rocha Daves Martins * Grid team www.eu-eela.org Ely Fonseca Overview • • • • • • Computational physiology The heart Heart models Computational Framework Inverse Problems Gridification Goals www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 3 Computational Physiology • Physiology: The study of the (bio) functions • Computational Physiology: The use and development of mathematical and computational models to describe biological functions www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 4 Computational Physiology • The bad news: – It is a wide gap connecting multiple scales, genes, proteins, cells, tissues, organs...; – multiple physics: quantum, molecular dynamics, chemistry, electro-mechanics…; www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 5 Computational Physiology • The models representation are based and depend on multiple and diverse data MODEL www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 6 The Heart www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 7 The Heart • The blood pump • Cells contract changing the organ geometry and the blood is expelled www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 8 The Heart • Cellular contraction: – An electric potential difference develops across the cell membrane and triggers a chain of electrochemical reactions that results in cellular contraction (intracellular Calcium spike, ATP, etc) www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 9 The Heart • The interior of the cells are connected by special proteins that allow the electric potential to propagate. A fast electric wave propagates and triggers heart contraction. www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 10 Models of Cardiac Electro-Mechanics • Cardiac disease is the #1 cause of death in the globe (30%) • Today, computational models of the heart provide a better understanding of the complex phenomenon and support the development of new drugs, therapies, biomedical equipments and clinical diagnostic methods www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 11 Models of Cardiac Electro-Mechanics • Bottom-up design – Sub-cellular and cellular mathematical models www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 12 Models of Cardiac Electro-Mechanics • Bottom-up design – Tissue mathematical models: electric activity www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 13 Models of Cardiac Electro-Mechanics • Bottom-up design – Tissue mathematical models: mechanical coupling www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 14 Models of Cardiac Electro-Mechanics • Bottom-up design – Organ modeling www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 15 Introduction to cardiac modelling • Two basic components: • 1) A cell model that describes the electric behavior of a single cell; • 2) A tissue model which describes how the cardiac electric wave propagates from one cell to another www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 16 Cell model • Bi-lipid layer: Cm q Cm q Cm d dq Ic dt dt • Ionic channels: Special arrangement of proteins cut thru the membrane and allow the flow of specific ions, such as Sodium, Potassium and Calcium. www.eu-eela.eu Intracellular space Extracellular space Ionic channel Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 17 Cardiac cell models e Cm Ic Iion i • Hodgkin-Huxley based models • Membrane works as a capacitor, isolating charges • The ionic channel currents and the transmembrane potential satisfy a set of ordinary differential equations www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 18 Cell models • • • • • • • Canine ventricular model: Beeler-Reuter (9 eqs) Rabbit atrial model: Lindblad (27 eqs) Rat ventricular model: Pandit et al (26 eqs) Human atrial model: Nygren et al (30 eqs) Simplified ventricular model based on FHN (2 eqs) Guinea pig ventricular model: Luo-Rudy II (14 eqs) Human atrial model: Courtemanche et al (20 eqs) www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 19 Cardiac Bidomain Model • Tissue Model for cardiac electrophysiology • Intracellurar and extracellular spaces (domains) modeled from an electrostatic point of view • The coupling of the two domains is via nonlinear cell modeling. Total cell membrane current spreads to both intracellurar and extracellular spaces www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 20 Cardiac Bidomain Model www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 21 Complex Models • Involves the coupling of several components (submodels) and data (geometry, biophysical parameters) • Each component is a complex mathematical formulation, typically with tens of variables and hundreds of parameters • New detailed models (components) are created and validated every week www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 22 Complex Models • Modeling Challenges: Multi-scale and Multiphysics • Computational Challenges: Simulations are computationally expensive (one heart beat = a couple of days in a parallel machine) • Integration Challenge: Patient Specific Heart Model www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 23 Results www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 24 Results • We have a 2D simulator • We needed a computational framework that would facilitate, stimulate and broadcast the use and benefits of cardiac modeling. • • The framework combines: • The parallel simulator for bidomain-based models • Cluster Computing • An automatic code generator for models described by CellML • User-Friendly Graphical Interfaces • Web Server www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 25 CellML • XML based language (machine-readable) • Describes mathematical models (MathML) • Repository contains over 300 biophysical models • A model is described via the connection of units, variables and components, in a hierarchical fashion www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 26 CellML • The goal: • Accelerating the development of new models • Computational Frameworks and tools • On the way: • Ontology and web semantic • Grid Computing www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 27 CellML-based tools • A couple of tools exist for edition, validation and simulation of models described in CellML • Today two CellMl-based frameworks provide both cell and tissue level simulations: • COR, a MS-Windows based environment, from the University of Oxford (cor.physiol.ox.ac.uk) • AGOS, A web-based framework from FISIOCOMPUFJF www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 28 Agos Framework • Goal: Reach the biologists • Computational Framework that hides many of the technical issues of cardiac modeling www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 29 The Computational Framework • It provides support to cardiac electrophysiology modeling • A editor to CellML language • A translator of CellML code into C++ code • A user-friendly Web form to setup parameters and visualize results • Web Server • Cluster Computing www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 30 Agos Translator • API Generator to ODE Solutions • Cellular models are described in CellML/MathML • It translates CellML code into a object oriented C++ code • Through the API generated, it is possible to simulate the model and setup parameters www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 31 Tissue Model www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 32 Inverse Problem 1. Forward Models of Cardiac Physiology 2. Inverse Problem www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 33 Inverse Problem • The forward problem – The user has to know all parameters, such as geometry of the organ and values of conductivity – It returns the potential diference along the time and space • Inverse problem – The user knows the potential diference – He or she may want calculate the geometry and all another parameters www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 34 Inverse Problems • Estimate the values of electrical activity on the cardiac tissue • Given a number of observed transmural electrograms estimate possible changes on the conductivity (,) of a known and specific region of the heart. www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 35 Inverse Problems Pathological Tissue Region with altered conductivity (,) • Motivation: focal variations of tissue conductivity values (both intra and extra) are observed in many different cardiac diseases: • Acute ischemia, Infarct, Chagas Disease, Myocarditis www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 36 Inverse Problem • More computational costly than the foward problem • It solves the forward problem lots of time sequentionally • InvCell and InvTissue www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 37 INVCell • We are adjusting a model which GA takes one day long to run. • Asynchronous x Synchronous. – • Heterogeneity x Homogeneity. It uses the AGOS API lots of times – www.eu-eela.eu ODEs are solved sequentionally Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 38 InvCell • Genetic algorithm – Based on Darwin’s evolutionary theory – Aims to optmization (maximize/minimize) – It works simulating the process of natural reproduction, mutation, and selecting the fittest individual www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 INVCell • GA implementation: – – – – – – – – The individuals are the parameters We know the solution – calculated by the simulator Each iteration gets more closer to the final solution Parallel GA – master-slaves. Floating point representation; Elitist selection; The initial population is randomly generated ; A new generation depends of their parents; www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 40 INVTissue • It solves an inverse problem associated to the simulation of cardiac tissue models. • It also has an implementation of a Genetic Algorithm parallelized with MPI. • It runs the simulator to each individual • Quite slow! www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 41 INVTissue • Investigate the solution of an inverse problem associated to cardiac electrophysiology • The goal is to estimate values for the electrical conductivity of cardiac tissue, taking as known some information concerning the electrical activity of the heart • Asynchronous non generational GA • Parallelized using master-slave www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 42 Goals • Porting InvCell – It should be the easiest; • Porting InvTissue – More complicated – lots of dependencies; • Porting of a basic version of the Heart Simulator – Hardest problem; www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 43 Goals • The heart simulator uses : – C code – Petsc library – MPI • Numerical methods to solve lots of equations • Each iteration have lots of dependencies on the previous one www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 44 Questions … www.eu-eela.eu Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008 45