Download Heart Simulator - EELA Documents

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Quantium Medical Cardiac Output wikipedia , lookup

Transcript
E-science grid facility for Europe and Latin America
Heart Simulator
FISIOCOMP - Laboratory of Computational Physiology
Computer Science Department
Universidade Federal de Juiz de Fora (UFJF)
Juiz de Fora - MG - Brazil
Gustavo Miranda Teixeira
Ricardo Silva Campos
www.eu-eela.org
E-science grid facility for Europe and Latin America
Group
Professors
Prof. Rodrigo Weber dos Santos, Dr. Math. *
Prof. Marcelo Lobosco, Dr. Comp. Sci. *
Prof. Ciro Barros Barbosa, Dr. Comp. Sci.
Prof. Rubens Oliveira, Dr. Eng.
Prof. Luis Paulo Barra, Dr. Eng.
Prof. Elson Toledo, Dr. Eng.
Master Students
Carolina Xavier
Ronan M. Amorim
Franciane Peters
Undergraduate Students
Caroline Costa
Gustavo Miranda *
Ricardo Campos *
Guilherme Montebrune
Former Master Students
Rafael Sachetto Oliveira
Fernando Otaviano Campos
Bernardo Rocha
Daves Martins
* Grid team
www.eu-eela.org
Ely Fonseca
Overview
•
•
•
•
•
•
Computational physiology
The heart
Heart models
Computational Framework
Inverse Problems
Gridification Goals
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
3
Computational Physiology
• Physiology: The study of the (bio) functions
• Computational Physiology: The use and development
of mathematical and computational models to describe
biological functions
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
4
Computational Physiology
• The bad news:
– It is a wide gap connecting multiple scales, genes, proteins,
cells, tissues, organs...;
– multiple physics: quantum, molecular dynamics, chemistry,
electro-mechanics…;
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
5
Computational Physiology
• The models representation are based and depend on
multiple and diverse data
MODEL
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
6
The Heart
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
7
The Heart
• The blood pump
• Cells contract changing
the organ geometry and
the blood is expelled
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
8
The Heart
• Cellular contraction:
– An electric potential difference develops across the cell
membrane and triggers a chain of electrochemical reactions
that results in cellular contraction (intracellular Calcium
spike, ATP, etc)
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
9
The Heart
• The interior of the cells are
connected by special
proteins that allow the
electric potential to
propagate. A fast electric
wave propagates and triggers
heart contraction.
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
10
Models of Cardiac Electro-Mechanics
• Cardiac disease is the #1 cause of death in the globe
(30%)
• Today, computational models of the heart provide a
better understanding of the complex phenomenon and
support the development of new drugs, therapies,
biomedical equipments and clinical diagnostic
methods
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
11
Models of Cardiac Electro-Mechanics
• Bottom-up design
– Sub-cellular and cellular mathematical models
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
12
Models of Cardiac Electro-Mechanics
• Bottom-up design
– Tissue mathematical models: electric activity
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
13
Models of Cardiac Electro-Mechanics
• Bottom-up design
– Tissue mathematical models: mechanical coupling
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
14
Models of Cardiac Electro-Mechanics
• Bottom-up design
– Organ modeling
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
15
Introduction to cardiac modelling
• Two basic components:
• 1) A cell model that describes the electric
behavior of a single cell;
• 2) A tissue model which describes how the
cardiac electric wave propagates from one cell to
another
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
16
Cell model
• Bi-lipid layer:
Cm 
q

Cm  q
Cm
d dq

 Ic
dt dt
• Ionic channels: Special
arrangement of proteins
cut thru the membrane
and allow the flow of
specific ions, such as
Sodium, Potassium and
Calcium.
www.eu-eela.eu
Intracellular space
Extracellular space
Ionic channel
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
17
Cardiac cell models
e
Cm
Ic
Iion
i
• Hodgkin-Huxley based models
• Membrane works as a capacitor, isolating charges
• The ionic channel currents and the transmembrane
potential satisfy a set of ordinary differential
equations
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
18
Cell models
•
•
•
•
•
•
•
Canine ventricular model: Beeler-Reuter (9 eqs)
Rabbit atrial model: Lindblad (27 eqs)
Rat ventricular model: Pandit et al (26 eqs)
Human atrial model: Nygren et al (30 eqs)
Simplified ventricular model based on FHN (2 eqs)
Guinea pig ventricular model: Luo-Rudy II (14 eqs)
Human atrial model: Courtemanche et al (20 eqs)
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
19
Cardiac Bidomain Model
• Tissue Model for cardiac electrophysiology
• Intracellurar and extracellular spaces
(domains) modeled from an electrostatic point
of view
• The coupling of the two domains is via nonlinear cell modeling. Total cell membrane
current spreads to both intracellurar and
extracellular spaces
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
20
Cardiac Bidomain Model
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
21
Complex Models
• Involves the coupling of several components
(submodels) and data (geometry, biophysical
parameters)
• Each component is a complex mathematical
formulation, typically with tens of variables and
hundreds of parameters
• New detailed models (components) are created and
validated every week
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
22
Complex Models
• Modeling Challenges: Multi-scale and Multiphysics
• Computational Challenges: Simulations are
computationally expensive (one heart beat = a
couple of days in a parallel machine)
• Integration Challenge: Patient Specific Heart Model
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
23
Results
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
24
Results
• We have a 2D simulator
• We needed a computational framework that would facilitate,
stimulate and broadcast the use and benefits of cardiac
modeling.
•
• The framework combines:
• The parallel simulator for bidomain-based models
• Cluster Computing
• An automatic code generator for models described by CellML
• User-Friendly Graphical Interfaces
• Web Server
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
25
CellML
• XML based language
(machine-readable)
• Describes mathematical models (MathML)
• Repository contains over 300 biophysical models
• A model is described via the connection of units,
variables and components, in a hierarchical fashion
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
26
CellML
• The goal:
• Accelerating the development of new models
• Computational Frameworks and tools
• On the way:
• Ontology and web semantic
• Grid Computing
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
27
CellML-based tools
• A couple of tools exist for edition, validation and
simulation of models described in CellML
• Today two CellMl-based frameworks provide both
cell and tissue level simulations:
• COR, a MS-Windows based environment, from the
University of Oxford (cor.physiol.ox.ac.uk)
• AGOS, A web-based framework from FISIOCOMPUFJF
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
28
Agos Framework
• Goal: Reach the biologists
• Computational Framework that hides many of the
technical issues of cardiac modeling
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
29
The Computational Framework
• It provides support to cardiac electrophysiology
modeling
• A editor to CellML language
• A translator of CellML code into C++ code
• A user-friendly Web form to setup parameters and
visualize results
• Web Server
• Cluster Computing
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
30
Agos Translator
• API Generator to ODE Solutions
• Cellular models are described in CellML/MathML
• It translates CellML code into a object oriented C++
code
• Through the API generated, it is possible to
simulate the model and setup parameters
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
31
Tissue Model
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
32
Inverse Problem
1.
Forward Models of
Cardiac Physiology
2.
Inverse Problem
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
33
Inverse Problem
• The forward problem
– The user has to know all parameters, such as geometry
of the organ and values of conductivity
– It returns the potential diference along the time and space
• Inverse problem
– The user knows the potential diference
– He or she may want calculate the geometry and all
another parameters
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
34
Inverse Problems
• Estimate the values of electrical activity on the
cardiac tissue
• Given a number of observed transmural
electrograms estimate possible changes on
the conductivity (,) of a known and specific
region of the heart.
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
35
Inverse Problems
Pathological Tissue
Region with altered conductivity
(,)
• Motivation: focal variations
of tissue conductivity
values (both intra and
extra) are observed in
many different cardiac
diseases:
• Acute ischemia, Infarct,
Chagas Disease,
Myocarditis
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
36
Inverse Problem
• More computational costly than the foward
problem
• It solves the forward problem lots of time
sequentionally
• InvCell and InvTissue
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
37
INVCell
•
We are adjusting a model which GA takes
one day long to run.
•
Asynchronous x Synchronous.
–
•
Heterogeneity x Homogeneity.
It uses the AGOS API lots of times
–
www.eu-eela.eu
ODEs are solved sequentionally
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
38
InvCell
• Genetic algorithm
– Based on Darwin’s evolutionary theory
– Aims to optmization (maximize/minimize)
– It works simulating the process of natural reproduction,
mutation, and selecting the fittest individual
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
INVCell
• GA implementation:
–
–
–
–
–
–
–
–
The individuals are the parameters
We know the solution – calculated by the simulator
Each iteration gets more closer to the final solution
Parallel GA – master-slaves.
Floating point representation;
Elitist selection;
The initial population is randomly generated ;
A new generation depends of their parents;
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
40
INVTissue
• It solves an inverse problem associated to the
simulation of cardiac tissue models.
• It also has an implementation of a Genetic
Algorithm parallelized with MPI.
• It runs the simulator to each individual
• Quite slow!
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
41
INVTissue
• Investigate the solution of an inverse problem
associated to cardiac electrophysiology
• The goal is to estimate values for the electrical
conductivity of cardiac tissue, taking as known some
information concerning the electrical activity of the heart
• Asynchronous non generational GA
• Parallelized using master-slave
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
42
Goals
• Porting InvCell
– It should be the easiest;
• Porting InvTissue
– More complicated – lots of dependencies;
• Porting of a basic version of the Heart
Simulator
– Hardest problem;
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
43
Goals
• The heart simulator uses :
– C code
– Petsc library
– MPI
• Numerical methods to solve lots of equations
• Each iteration have lots of dependencies on the
previous one
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
44
Questions …
www.eu-eela.eu
Itacuruça (Brazil) , E2GRIS1, 2.11.2008 – 15.11.2008
45