Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Ischemia-reperfusion injury (IRI) Introduction 1955, Sewel tied up coronary of dog, loose suddenly ventricular fibrillation 。 Kane tied up left entricular branch of coronary of rat ECG no obvious change relieve deligation arrhythmic 1972 1978 1981 Flore Modry Greenberg kidney IRI lung IRI intestine IRI Concept: based on ischemia injury of tissue and organs restoration of blood flow after transient or ischemia further reversible or irreversible cell damage ischemia reperfusion injury(IRI)。 pH paradox ischemia acidosis , disorder of function and metbolism on cell severe IRI pH paradox calcium paradox pre-perfuse rat heart with no calcium perfusion for 2min perfuse calcium perfusion, cell release enzyme myofibril over-constract, electron signals abnormal, calcium paradox Oxygen paradox Hypoxia liquid perfuse organ or culture without oxygen injury restore perfusion severe injury Ⅰ. Cause of ischemia-reperfusion injur y and affecting factor 1. cause coronary in spasm antispasmotic thrombosis thrombolytic therapy coronary by-pass operation on heart: no-reflow organ transplant 2.Affecting factor ⑴ ischemic time small animals 5-10min: arrhythmia 20-30min: ventricular tremor big 20-40min: reversible injury animals 40-60min: irreversible injury diversity between small and big animal Changes of ischemic perfuse: ATP、Ca2+、K+ ⑵ collateral(侧枝) circulation:chronic ⑶ O2 consumption rate [K+ ] , [Mg2+] protection [Na+ ] , [Ca2+] damage ⑷ electrolytes (5) condition of T, pressure,pH,Na+,Ca2+ reperfusion T, pressure,Na+,Ca2+ protection damage Ⅱ. pathogenesis of ischemia-reperfusion injury 1. The role of free radical ⑴ kinds and concept of free radical free radical: normal: O2 +4e+4H+ 2H2O - + 2H + -+H + -+H + e e e O2 → O •2 H2O2 OH • H 2O e- H2O oxygen free radical: O •2 、OH • kinds of (active oxygen: 1O2、H2O2 free radical OH • ) lipid free radical: L•、LO•、LOO• others: Cl•、CH3•、NO (2) mechanism of increase of oxygen free radical ① formation of oxygen free radical nature oxidation of Hb , Cyt C O2 O ‾∙2 O ‾∙2 H2O2 OH∙ H2O H2 O oxidation of enzyme : xanthine oxidase(XO) xanthine uric acid O2 O ‾∙2 Mitochondria: O ‾∙2 normal: O2+4e+4H+→H2O+ATP abnormal :O2+e→ O·-2 +e +2H+→H202+e+H+→ OH· +e+H+→H20 Cyt P450 O insert O +2 H + C—H C—OH H2O O ‾∙2 H2O2 Produce of OH· SOD O·-2+ O·-2+2H+ H2O2+O2 O·-2+H2O2 Fenton Haber-Weiss: SOD O·-2 Fe2+ H2O2 OH· + OH·+O2 Fe3+ OH· + OH- (2) lipid free radical concept: types:L· , LO· LOO· (3)non- lipid free radical: NO· 、 ONOO- They are balance between produce and clearance Haber-Weiss reaction(Fenton reaction ) OH ∙ 1O 2 Fe3+ + O‾∙2 Fe2+ + O2 H2O2 Fe3+ + OH- + OH∙ O ‾∙2 + H2O2 Fe盐 O2 + OH-+ OH∙ 1O + OHO‾∙2 + OH∙ 2 CI+ + H2O H2O + OCl1O + Cl- + H O OCl+ H2O2 2 2 photosensitive substance O2 1O 2 effects:WBC 2O‾∙2 + 2H + H2O2 SOD H2O2+ O2 O2 Other oxidase 2H+ H2O2 application disinfection ② increase of oxygen free XD Xanthine oxidase (XO) : Ischemia ATP xanthine dehydrogenase [Ca2+]i xanthine oxidase Xanthine oxidase pathway ischemia reperfusion ATP ADP AMP XD 2+ Adenine nucleoside Ca Hypoxanthine nucleoside xo Hypoxanthine xanthine+O‾∙2 +H2O O2 XO Uricacid +O‾∙2 +H2O Fe 2+ OH∙ The effects of leucocyte reperfusion:oxygen consumption of infiltrated WBC ↑70-90% O2 NADPH氧化酶 NADPH +2O2 NADH+O2+2H+ 2O·-2 +NADP++H+ NADH氧化酶 H2O2+NAD+ +H+ Phenomenon of increase in production of oxygen radicals 1.repiratory burst (oxygen burst) 2.hypoxia O‾∙2 \ OH∙ mitochondria repiratory chain Ca2+ O‾∙2 (3) damage action of free radical ① membrane lipid peroxidation cellular membrane permeability lipid peroxidation of membrane [Ca2+] i calcium overload lipid cross-linked inhibition of Na+-pump and Ca2+-pump calcium overload [Na+] i , [Ca2+] i membrane lipid phospholipase C peroxidation phospholipase D damage of mitochondria membrane PGs , LTs(花) TXA2 ATP ② inhibition of protein function enzymes :stop heart beat IR GSH(blood) of protein channels: ③ destruction of nuclear acid DNA- DNA, DNA-protein : injury (1) mechanism of calcium overload Ca2+ input ① abnormal exchange of Na+/Ca2+ ATP Na+-pump [Na+] i exchange of Na+(out)/Ca2+ hypoxia exchange acidosis of Na+(in)/H+(out) [Na+] i normal exchange of Na+(in)/Ca2+(out) , (in) (convert) ischemia α1 – receptor Ca2+ catecholamine H+ α1 Na+ IP3 and DG PKC S R 2+ Ca Normal:βreceptor Ca2+ Ca2+ catecholamine β – receptor [Ca2+] i L Ca2+- channel β Cellular membrane Ca2+ pre-apply anti-Ca2+ drugs GOOD ② injury of biomembrane damage of cellular membrane normal Ca2+ bridge glycocalyx Cellular membrane Cellular membrane No Ca2+ glycocalyx Cellular membrane reperfusion Ca2+ glycocalyx Cellular membrane Ca2+ lipid break up PLA2 Damage of mitochondria and sarcoplasmic Damage of mitochondria Damage of Sarcopasmic ATP Ca2+- ATPase calcium overload (2) Damage mechanism of calcium overload ①phospholipase injury of cell membrane and cell organ ②output of Ca2+ consumption of ATP ③Ca2+ + phosphate production of ATP deposition ④ [Ca2+] i ⑤ [Ca2+] i XO free radical 3. role of leukocyte In 1984 , Mullane found that conorary was obstructed 60min, Engler, Ischemia phospholipase LTs Congregate of leukocyte Expression of adhesion molecule Release inflammatory factor Production of free radical no-reflow 5. Role of neutrophil : 1) Injury of microvessle microcirculation: caliber contracte , dialate permability 2) Injury of cells Ⅲ. Changes of function and metabolism 1. changes of heart in ischemia-reperfusion injury arrhythmia heart function cardiac output free radical energy calcium overload reperfusion myocardial structural damage damage of mitochondria sweep of ADP,AMP produce ATP destruction of membrane rupture and dissolve of myofibril damage of mitochondrion 2. changes of brain in ischemia-reperfusion injury ATP Na+-pump cellular edema Hypoxia of cells cellular acidosis Excitability transmitter inhibitive transmitter cAMP↑ cGMP↓ activate free fatty acid↑ lipid peroxidation↑ Hisconstructure Edema , necrosis 3. Others Colone, kidney Ⅳ. Principles of prevention and treatment 1. restoring normal perfusion of tissue in time low temperature; low pressure; low flow; low natrium(sodium); low pH; low calcium 2. improve the metabolism of the tissues ATP; cytochrome C; 3. sweep away free radical: VitE: lose e VitC: FR (lipid) FR clear OH∙ β-cartenoids: clear GSH (water) 1O 2 (2)enzyme scavenger: 2 O‾∙2 +2H+ SOD CAT H2O + O2 H2O2 H2O+ O2 4. relieve of calcium overload Ca2+ ion blok agent 5. CoQ Inhibit L • (lipid free radical) 2L+ CoQ 2LH+ CoQ protein enzyme inhibitor: ulinastatin