Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 15 The Cardiovascular System: The Heart Copyright 2010, John Wiley & Sons, Inc. Location of the Heart Thoracic cavity between two lungs surrounded by pericardium: Fibrous pericardium ~2/3 to left of midline Inelastic and anchors heart in place Inside is serous pericardium - double layer around heart Parietal layer fused to fibrous pericardium Inner visceral layer adheres tightly to heart Filled with pericardial fluid - reduces friction during beat. Copyright 2010, John Wiley & Sons, Inc. Position of the Heart Copyright 2010, John Wiley & Sons, Inc. Position of the Heart Copyright 2010, John Wiley & Sons, Inc. Heart Wall Epicardium - outer layer Myocardium - cardiac muscle Two separate networks via gap junctions in intercalated discs - atrial & ventricular Networks- contract as a unit Endocardium - Squamous epithelium lines inside of myocardium Copyright 2010, John Wiley & Sons, Inc. Pericardium Copyright 2010, John Wiley & Sons, Inc. Cardiac Muscle Tissue Copyright 2010, John Wiley & Sons, Inc. Chambers of the Heart 4 chambers 2 upper chambers = Atria 2 lower chambers = ventricles Between is interatrial septum Between is interventricular septum Wall thickness depends on work load Atria thinnest Right ventricle pumps to lungs & thinner than left Copyright 2010, John Wiley & Sons, Inc. Structure of the Heart Copyright 2010, John Wiley & Sons, Inc. Structure of the Heart Copyright 2010, John Wiley & Sons, Inc. Great Vessels Of Heart-Right Superior & inferior Vena Cavae Delivers deoxygenated blood to R. atrium from body Coronary sinus drains heart muscle veins R. Atrium R. Ventricle pumps through Pulmonary Trunk R & L pulmonary arteries lungs Copyright 2010, John Wiley & Sons, Inc. Great Vessels Of Heart-Left Pulmonary Veins from lungs oxygenated blood L. atrium Left ventricle ascending aorta body Between pulmonary trunk & aortic arch is ligamentum arteriosum fetal ductus arteriosum remnant Copyright 2010, John Wiley & Sons, Inc. Anterior View of Frontal Section Copyright 2010, John Wiley & Sons, Inc. Valves Designed to prevent back flow in response to pressure changes Atrioventricular (AV) valves Between atria and ventricles Right = tricuspid valve (3 cusps) Left = bicuspid or mitral valve Semilunar valves near origin of aorta & pulmonary trunk Aortic & pulmonary valves respectively Copyright 2010, John Wiley & Sons, Inc. Atrioventricular Valves: Bicuspid Valves Copyright 2010, John Wiley & Sons, Inc. Atrioventricular Valves: Superior View Copyright 2010, John Wiley & Sons, Inc. Blood Flow Through Heart Copyright 2010, John Wiley & Sons, Inc. Blood Flow Copyright 2010, John Wiley & Sons, Inc. Conduction System 1% of cardiac muscle generate action potentials= Pacemaker & Conduction system Normally begins at sinoatrial (SA) node Atria & atria contract AV node - slows AV bundle (Bundle of His) bundle branches Purkinje fibers apex and up- then ventricles contract Copyright 2010, John Wiley & Sons, Inc. Pacemaker Depolarize spontaneously sinoatrial node ~100times /min also AV node ~40-60 times/min in ventricle ~20-35 /min Fastest one run runs the heart = pacemaker Normally the sinoatrial node Copyright 2010, John Wiley & Sons, Inc. Frontal plane Left atrium Right Right atrium atrium 1 SINOATRIAL (SA) NODE 2 ATRIOVENTRICULAR (AV) NODE 3 ATRIOVENTRICULAR (AV) BUNDLE (BUNDLE OF HIS) Left ventricle 4 RIGHT AND LEFT BUNDLE BRANCHES Right Right ventricle ventricle 5 PURKINJE FIBERS Copyright 2010, John Wiley & Sons,view Inc. of frontal section Anterior Electrocardiogram Recording of currents from cardiac conduction on skin = electrocardiogram (EKG or ECG) P wave = atrial depolarization QRS complex = Ventricular depolarization Contraction begins right after peak Repolarization is masked in QRS Contraction of ventricle T-wave = ventricular repolarization Just after ventricles relax Copyright 2010, John Wiley & Sons, Inc. ECG Copyright 2010, John Wiley & Sons, Inc. Cardiac Cycle after T-wave ventricular diastole After P-wave atrial systole Ventricular pressure drops below atrial & AV valves open ventricular filling occurs Finishes filling ventricle (`25%) After QRS ventricular systole Pressure pushes AV valves closed Pushes semilunar valves open and ejection occurs Ejection until ventricle relaxes enough for arterial pressure to close semilunar valves Copyright 2010, John Wiley & Sons, Inc. Cardiac Cycle Copyright 2010, John Wiley & Sons, Inc. Flow Terms Cardiac Output (CO) = liters/min pumped Heart Rate (HR) = beats/minute (bpm) Stroke volume (SV) = volume/beat CO = HR x SV Copyright 2010, John Wiley & Sons, Inc. Exercise and the Heart Aerobic exercise (longer than 20 min) strengthens cardiovascular system Well trained athlete doubles maximum C.O. Resting C.O. about the same but resting H.R. decreased Copyright 2010, John Wiley & Sons, Inc.