Download The Rational Root Theorem

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Bell Ringer
• 1. What is the Rational Root Theorem
(aka Rational Zero Theorem Algebra II
Textbook p. 378).
• 2. What is the Fundamental Theorem of
Algebra (search your notebook…Unit 2).
• 3. If a function has 5 roots and only 1 of them
is rational, what are the possibilities for the
nature and number of the other 4 roots?
• 4. How does end behavior work for both odd
and even degree polynomial functions?
Applying the
Rational Root Theorem
Thursday, March 17, 2016
The Rational Root Theorem
The Rational Root Theorem gives a list of possible rational zeros of a
polynomial function. Equivalently, the theorem gives all possible rational roots
of a polynomial equation. Not every number in the list will be a zero of the
function, but every rational zero of the polynomial function will appear
somewhere in the list.
The Rational Root Theorem
p
If f(x) = anxn + an-1xn-1 +…+ a1x + a0 has integer coefficients and
q
p
(where is reduced) is a rational zero, then p is a factor of the constant
q
term a0 and q is a factor of the leading coefficient an.
EXAMPLE: Using the Rational Root Theorem
List all possible rational zeros of f(x) = 15x3 + 14x2 - 3x – 2.
Solution
The constant term is –2 and the leading coefficient is 15.
Factors of the constant term, - 2
Factors of the leading coefficient, 15
1,  2
=
1,  3,  5,  15
Possible rational zeros =
= 1,  2,
 13 ,  23 ,
Divide 1
and 2
by 1.
Divide 1
and 2
by 3.
 15 ,  52 ,
Divide 1
and 2
by 5.
1 ,  2
 15
15
Divide 1
and 2
by 15.
There are 16 possible rational zeros. The actual solution set to f(x) = 15x3 +
14x2 - 3x – 2 = 0 is {-1, -1/3, 2/5}, which contains 3 of the 16 possible solutions.
EXAMPLE:
Solve:
Solving a Polynomial Equation
x4 - 6x2 - 8x + 24 = 0.
Solution Because we are given an equation, we will use the word "roots,"
rather than "zeros," in the solution process. We begin by listing all possible
rational roots.
Factors of the constant term, 24
Factors of the leading coefficient, 1
1,  2  3,  4,  6,  8,  12,  24
=
1
= 1,  2  3,  4,  6,  8,  12,  24
Possible rational zeros =
EXAMPLE:
Solve:
Solving a Polynomial Equation
x4 - 6x2 - 8x + 24 = 0.
Solution The graph of f(x) = x4 - 6x2 - 8x + 24 is shown the figure below.
Because the x-intercept is 2, we will test 2 by synthetic division and show that
it is a root of the given equation.
2
1
1
0 -6 -8 24
2
4 -4 -24
2 -2 -12 0
The zero remainder
indicates that 2 is a root
of x4 - 6x2 - 8x + 24 = 0.
x-intercept: 2
EXAMPLE:
Solve:
Solving a Polynomial Equation
x4 - 6x2 - 8x + 24 = 0.
Solution
Now we can rewrite the given equation in factored form.
x4 - 6x2 + 8x + 24 = 0
(x – 2)(x3 + 2x2 - 2x - 12) = 0
x–2=0
or
x3 + 2x2 - 2x - 12 = 0
This is the given equation.
This is the result obtained from the
synthetic division.
Set each factor equal to zero.
Now we must continue by factoring x3 + 2x2 - 2x - 12 = 0
EXAMPLE:
Solve:
Solving a Polynomial Equation
x4 - 6x2 - 8x + 24 = 0.
Solution Because the graph turns around at 2, this means that 2 is a root of
even multiplicity. Thus, 2 must also be a root of x3 + 2x2 - 2x - 12 = 0.
These are the coefficients
of x3 + 2x2 - 2x - 12 = 0.
2
1
1
x-intercept: 2
2
2
4
-2 -12
8 12
6
0
The zero remainder
indicates that 2 is a root of
x3 + 2x2 - 2x - 12 = 0.
EXAMPLE:
Solve:
Solution
Solving a Polynomial Equation
x4 - 6x2 - 8x + 24 = 0.
Now we can solve the original equation as follows.
x4 - 6x2 + 8x + 24 = 0
(x – 2)(x3 + 2x2 - 2x - 12) = 0
(x – 2)(x – 2)(x2 + 4x + 6) = 0
x – 2 = 0 or x – 2 = 0 or x2 + 4x + 6 = 0
x=2
x=2
x2 + 4x + 6 = 0
This is the given equation.
This was obtained from the first
synthetic division.
This was obtained from the second
synthetic division.
Set each factor equal to zero.
Solve.
EXAMPLE:
Solve:
Solution
Solving a Polynomial Equation
x4 - 6x2 - 8x + 24 = 0.
We can use the quadratic formula to solve x2 + 4x + 6 = 0.
-b  b2 - 4ac
x=
2a
-4  42 - 4 1  6 
=
2 1
-4  - 8
=
2
-4  2i 2
=
2
= -2  i 2
We use the quadratic formula because x2 + 4x + 6 = 0
cannot be factored.
Let a = 1, b = 4, and c = 6.
Multiply and subtract under the radical.
-8 =
4(2)(-1) = 2i 2
Simplify.
The solution set of the original equation is {2, -2 - i 2, -2 + i 2}.
Properties of Polynomial Equations
1. If a polynomial equation is of degree n, then counting multiple roots
separately, the equation has n roots.
2.
If a + bi is a root of a polynomial equation (b  0), then the non-real
complex number a - bi is also a root. Non-real complex roots, if
they exist, occur in conjugate pairs.
Practice
Classwork:
Polynomial End Behavior
Homework:
Rational Root Theorem:
List ALL possible roots based on the
theorem, then find ALL the actual roots.
Exit Ticket
• 1. Explain the Rational Root
Theorem
• 2. Once you have the
rational roots, how do you
determine the rest of the
roots?
Related documents