Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Stats 443.3 & 851.3 Linear Models Instructor: W.H.Laverty Office: 235 McLean Hall Phone: 966-6096 Lectures: Evaluation: MWF 9:30am - 10:20am Geol 269 Lab 2:30pm – 3:30 pm Tuesday Assignments, Term tests - 40% Final Examination - 60% • The lectures will be given in Power Point Course Outline Introduction Review of Linear Algebra and Matrix Analysis Review of Probability Theory and Statistical Theory Multivariate Normal distribution The General Linear Model Theory and Application Special applications of The General Linear Model Analysis of Variance Models, Analysis of Covariance models A chart illustrating Statistical Procedures Independent variables Dependent Variables Categorical Continuous Categorical Multiway frequency Analysis (Log Linear Model) Discriminant Analysis Continuous ANOVA (single dep var) MANOVA (Mult dep var) Continuous & Categorical ?? MULTIPLE REGRESSION (single dep variable) MULTIVARIATE MULTIPLE REGRESSION (multiple dependent variable) ?? Continuous & Categorical Discriminant Analysis ANACOVA (single dep var) MANACOVA (Mult dep var) ?? A Review of Linear Algebra With some Additions Matrix Algebra Definition An n × m matrix, A, is a rectangular array of elements a1n   a11 a12 a  a a 21 22 2n   A  aij      amn   am1 am 2   n = # of columns m = # of rows dimensions = n × m Definition A vector, v, of dimension n is an n × 1 matrix rectangular array of elements  v1  v  2  v     vn  vectors will be column vectors (they may also be row vectors) A vector, v, of dimension n  v1  v  2  v     vn  can be thought a point in n dimensional space v3  v1  v  v2   v3  v2 v1 Matrix Operations Addition Let A = (aij) and B = (bij) denote two n × m matrices Then the sum, A + B, is the matrix  a11  b11 a12  b12 a b a  b 21 21 22 22  A  B   aij  bij      am1  bm1 am 2  bm 2 a1n  b1n  a2 n  b2 n    amn  bmn  The dimensions of A and B are required to be both n × m. Scalar Multiplication Let A = (aij) denote an n × m matrix and let c be any scalar. Then cA is the matrix  ca11 ca12  ca ca 21 22  cA   caij     cam1 cam 2 ca1n  ca2 n    camn  Addition for vectors v3  v1  w1  v  w  v2  w2   v3  w3   w1  w   w2   w3   v1  v  v2   v3  v1 v2 Scalar Multiplication for vectors v3  cv1  cv  cv2   cv3   v1  v  v2   v3  v2 v1 Matrix multiplication Let A = (aij) denote an n × m matrix and B = (bjl) denote an m × k matrix Then the n × k matrix C = (cil) where m cil   aij b jl j 1 is called the product of A and B and is denoted by A∙B In the case that A = (aij) is an n × m matrix and B = v = (vj) is an m × 1 vector m Then w = A∙v = (wi) where wi  aij v j  j 1 is an n × 1 vector A w3 v3  v1  v  v2   v3  w2 v2  w1  w   w2   Av  w3  w1 v1 Definition An n × n identity matrix, I, is the square matrix 1 0 0 1 I  In     0 0 Note: 1. AI = A 2. IA = A. 0 0    1 Definition (The inverse of an n × n matrix) Let A denote the n × n matrix a1n   a11 a12 a  a a 21 22 2n   A  aij      ann   an1 an 2   Let B denote an n × n matrix such that AB = BA = I, If the matrix B exists then A is called invertible Also B is called the inverse of A and is denoted by A-1 Note: Let A and B be two matrices whose inverse exists. Let C = AB. Then the inverse of the matrix C exists and C-1 = B-1A-1. Proof C[B-1A-1] = [AB][B-1A-1] = A[B B-1]A-1 = A[I]A-1 = AA-1=I The Woodbury Theorem 1 1   A  BCD  A  A B C  DA B DA     1 1 1 1 where the inverses 1 A ,C 1 and C  DA B  1 1 1 1 exist. Proof: 1 1 1 1 1 1 Let H  A  A B C  DA B  DA Then all we need to show is that H(A + BCD) = (A + BCD) H = I. H  A  BCD     1 A  A B C  DA B  DA1  A  BCD  1 1 1 1 1  A A  A B C  DA B  DA1 A 1 1 1 1 1  A BCD  A B C  DA B  DA BCD 1 1 1 1 1 1  I  A B C  DA B  D 1 1 1 1  A BCD  A B C  DA B  DA1BCD  I  A1 BCD 1 1 1 1 1  A B C  DA B   I  DA1BC  D  I  A1 BCD 1 1 1 1 1 1     A B C  DA B  C  DA B  CD 1 1 1 1 1  I  A BCD  A BCD  I The Woodbury theorem can be used to find the inverse of some pattern matrices: Example: Find the inverse of the n × n matrix b a a b    a a a 1 0   a 0 1   b  a      b 0 0 1 1   b  a  I    a 1 1 1    1 0 1 1   0 1 1  a     1 1 1 A  BCD 1  1   1 where A  b  a  I 1 1 B      1 1 I hence A  ba 1 C  a 11 D  1 1 1 C   a 1 1 1 1  1   1 1 C  DA B   1 1 1  I a b  a     1 1 n b  a  an b  a  n  1     a b  a a b  a  a b  a  and 1 Thus a b  a  C  DA B   b  a  n  1 1 1 1 Now using the Woodbury theorem 1 1   A  BCD  A  A B C  DA B DA     1 1 1 1 1 1 1 a b  a   1 1 1    I I 1 1 1 I  ba b  a   b  a  n  1 ba  1 1 1 1 a   1 1  I 1 ba  b  a   b  a  n  1     1 Thus 1 b a a b    a a 1 0 0 1 1  ba   0 0 c d    d a a     b 0 1 1 1 1 0  a     b  a   b  a  n  1     1 1 1 d c d d  d   c 1 1   1 where a d   b  a   b  a  n  1  1 a and c   b  a  b  a   b  a  n  1   1  a 1  b  a  n  2   1     b  a  b  a  n  1  b  a  b  a  n  1  Note: for n = 2 a a d   2  b  a  b  a  b  a 2 1  b  b and c   2   b  a  b  a  b  a2 1 b a  1 Thus   2  2 a b b  a    b a   a b    Also b a a b    a a a  b a a   a b   b  a a  bc   n  1 ad  bd  ac  (n  2)ad     bd  ac  (n  2)ad 1 a b a a b a       b a a bd  ac  (n  2)ad bc   n  1 ad bd  ac  (n  2)ad a  c a   d   b  d d c d d d    c bd  ac  (n  2)ad   bd  ac  (n  2)ad    bc   n  1 ad  Now a d   b  a   b  a  n  1  1  b  a  n  2  and c    b  a  b  a  n  1  2   b  a n  2 n  1 a     b bc   n  1 ad    b  a  b  a  n  1   b  a   b  a  n  1   b  b  a  n  2     n  1 a 2  b  a   b  a  n  1  b2  ab  n  2    n  1 a 2  2 1 2 b  ab  n  2    n  1 a and b  (n  2)a  a  a  b  a  n  2  bd  ac  (n  2)ad    b  a  b  a  n  1   b  a   b  a  n  1  0 This verifies that we have calculated the inverse Block Matrices Let the n × m matrix  A11 A  nm n  q  A21 A12  A22  q m p p be partitioned into sub-matrices A11, A12, A21, A22, Similarly partition the m × k matrix  B11 B   mk m  p  B21 p l B12   B22  k l Product of Blocked Matrices Then  A11 A B    A21 A12   B11   A22   B21  A11B11  A12 B21   A21B11  A22 B21 B12   B22  A11B12  A12 B22   A21B12  A22 B22  The Inverse of Blocked Matrices Let the n × n matrix  A11 A  nn n  p  A21 p p A12  A22  n p be partitioned into sub-matrices A11, A12, A21, A22, Similarly partition the n × n matrix  B11 B  nn n  p  B21 p Suppose that B = A-1 p B12   B22  n p Product of Blocked Matrices Then  A11 A B    A21 A12   B11   A22   B21  A11B11  A12 B21   A21B11  A22 B21  Ip   0  n p  p 0  p n  p   I n p   B12   B22  A11B12  A12 B22   A21B12  A22 B22  Hence A11B11  A12 B21  I A11B12  A12 B22  0 1  2 A21B11  A22 B21  0 A21B12  A22 B22  I From (1) 3  4 A11  A12 B21 B111  B111 From (3) 1 A22 A21  B21 B111  0 or B21 B111   A221 A21 Hence or 1 22 1 11 A11  A12 A A21  B B11   A11  A12 A A21  1 22 1 1 1    A  A A  A22  A A A  A21 A11 1 11 1 11 12 1 21 11 12 using the Woodbury Theorem Similarly 1 B22   A22  A A A  1 1 1 1  A22  A22 A21  A11  A12 A22 A21  A12 A221 1 21 11 12 From A21B11  A22 B21  0 3 1 A22 A21 B11  B21  0 and B21   A A21B11   A A21  A11  A12 A A21  1 22 1 22 1 22 1 similarly B12   A A B22   A A  A22  A A A  1 11 12 1 11 12 1 21 11 12 1 Summarizing  A11 A  nn n  p  A21 A12   A22  p Let n p p B11  Suppose that A-1 = B   n  p  B21 p p B12   B22  n p then 1 1 B11   A11  A12 A A21   A  A A  A22  A A A  A21 A111 1 22 1 1 11 1 11 12 1 21 11 12 1 B22   A22  A A A   A  A A21  A11  A12 A A21  A12 A221 1 21 11 12 1 22 1 22 1 22 B12   A A B22   A A  A22  A21 A111 A12  1 11 12 1 11 12 1 B21   A A21B11   A A21  A11  A12 A A21  1 22 1 22 1 22 1 Example Let  aI A  p  cI p p a   bI   0   dI   c p   0 Find A-1 = B 0 0   b  0   d b a 0 0 d c  B11   n  p  B21 p p 0 B12  B22  n p A11  aI , A12  bI , A21  cI , A22  dI 1 B11  aI  bI  I  cI    a  bcd  I  1 d 1 1 d ad bc B22   dI  cI  I  bI    d  bca  I  1 a 1 I a ad bc B12   A111 A12 B22   1a I (bI ) ad abc I   ad bbc I 1 B21   A22 A21 B11   d1 I (cI ) addbc I   ad cbc I d  ad bc I 1 hence A   c   ad bc I  ad bbc I   a I ad bc  I The transpose of a matrix Consider the n × m matrix, A  a11 a12 a a22 21  A   aij      am1 am 2 a1n  a2 n    amn  then the m × n matrix,A (also denoted by AT)  a11 a21 a a22 12  A   a ji      am1 am 2 is called the transpose of A am1  am 2    amn  Symmetric Matrices • An n × n matrix, A, is said to be symmetric if A  A Note:   AB   BA 1 1 1  AB   B A  A 1  A 1   The trace and the determinant of a square matrix Let A denote then n × n matrix  a11 a12 a a 21 22  A   aij      an1 an 2 Then n tr  A    aii i 1 a1n   a2 n    ann   a11 a12 also a a 21 22  A  det    an1 an 2 a1n  a2 n   the determinant of A   ann  n   aij Aij j 1 where Aij  cofactor of aij   1 i j  the determinant of the matrix    th th  after deleting i row and j col.   a11 a12  det   a11a22  a12 a21  a21 a22  Some properties 1. I  1, tr  I   n 2. AB  A B , tr  AB   tr  BA 3. 4. 1 A 1  A  A11 A   A21 1  A A  A A A12   22 11 12 22 A21   A22   A11 A22  A21 A111 A12   A22 A11 if A12  0 or A21  0 Some additional Linear Algebra Inner product of vectors Let x and y denote two p × 1 vectors. Then. x  y   x1 ,  y1    , x p     x1 y1   yp    p   xi yi i 1  xp yp Note: 2  x  x  x1   x  the length of x 2 p Let x and y denote two p × 1 vectors. Then. cos   x  y  angle between x and y x  x y  y x y  Note: Let x and y denote two p × 1 vectors. Then. cos     x  y if between x  y  0 xand  0angle andy  2 x  x y  y     Thus if x   y  0, then x and y are orthogonal . x y  2 Special Types of Matrices 1. Orthogonal matrices – A matrix is orthogonal if PˊP = PPˊ = I – In this cases P-1=Pˊ . – Also the rows (columns) of P have length 1 and are orthogonal to each other Suppose P is an orthogonal matrix then PP  PP  I Let x and y denote p × 1 vectors. Let u  Px and v  Py Then uv   Px   Py   xPPy  xy and uu   Px   Px   xPPx  xx Orthogonal transformation preserve length and angles – Rotations about the origin, Reflections Example The following matrix P is orthogonal 1 1 P 1  1 3 2 3  3 1 2 1 6   0   2 6  1 6 Special Types of Matrices (continued) 2. Positive definite matrices – A symmetric matrix, A, is called positive definite  if: 2 2  x Ax  a11x1    ann xn  2a12 x1 x2   2a12 xn 1 xn  0   for all x  0 – A symmetric matrix, A, is called positive semi definite if:   xAx  0   for all x  0 If the matrix A is positive definite then    the set of points, x , that satisfy x Ax  c where c  0 are on the surface of an n  dimensiona l ellipsoid  centered at the origin, 0. Theorem The matrix A is positive definite if A1  0, A2  0, A3  0,, An  0 where  a11 a12 a13   a11 a12    A1  a11  , A2   , A3  a12 a22 a23 ,  a12 a22  a13 a23 a33   a11 a12  a1n  a a  a  12 22 2n   and An  A         a1n a2 n  ann  Example .5 .25 .125  1  .5  1 . 5 . 25  A  .25 .5 1 .5    1  .125 .25 .5  1 .5 .25   A3  det  .5 1 .5  .25 .5 1   1 .5 A2  det   . 5 1   A  A4  0.421875  0 A3  0.5625  0 A2  0.75  0, A1  det1  1  0 Special Types of Matrices (continued) 3. Idempotent matrices – A symmetric matrix, E, is called idempotent if: EE  E – Idempotent matrices project vectors onto a linear subspace    EEx   Ex x  Ex Example Let A be any m  n matrix of rank m  n. -1   Let E  A  A  A  A, then E is idempotent . Proof :    EE  A A  A A A A  A A -1 -1  A A  A  AA A  A A -1 -1    A A  A  A  E -1 Example (continued) 1 1 0 A   0 1 1  1 1 0 1 0   1 1 0   1 1 0 -1    E  A A  A A  1 1  1 1      0 1 1 0 1 1  0 1     0 1    1 0 1 0 2 1  3 2 1 1 1 0      1 1   1 1  1    3 1 2 0 1 1   0 1 0 1  23   13  13 1 3 2 3 1 3  13  1  3  2  3   13  1 1 0  2  0 1 1  3  Vector subspaces of n Let n denote all n-dimensional vectors (ndimensional Euclidean space). Let M denote any subset of n. n if: Then M is a vector subspace of   1. 0 M    2. If u M and v M then u  v  M   3. If u M then cu M . Example 1 of vector subspace   Let M  u au  a1u1  a2u2   anun  0    a1  a    2 where a  is any n-dimensional vector.     an  Then M is a vector subspace of n. Note: M is an (n - 1)-dimensional plane through the origin. Proof   Now M  u au  a1u1  a2u2   anun  0   1. a0  0.   2. If au  0 and av  0      the n au  v   au  av  0  3. If au  0    the n acu   cau  0   Note the vector a is orthogonal to any vector u  since au  0  Projection onto M.  Let x be any vector  The equation of the line through x perpendicu lar to the plane M    is u  x  ta    The point u  x  ta is the projection onto the plane  if t is chosen so that u is on the plane.     ax i.e. au  ax  taa  0 and t     aa      ax  and u proj  x  ta  x    a aa Example 2 of vector subspace     Let M  u u  b1a1  b2a 2    b p a p      a1 , a 2 ,, a p is any set of p n  dimensiona l vectors. Then M is a vector subspace of n. M is called the vector space spanned by the p    n -dimensional vectors: a1 , a 2 ,  , a p M is a the plane of smallest dimension through the origin that contains the vectors:    a1 , a 2 ,  , a p Eigenvectors, Eigenvalues of a matrix Definition Let A be an n × n matrix Let x and  be such that Ax   x with x  0 then  is called an eigenvalue of A and and x is called an eigenvector of A and Note:  A  I  x  0 If A   I  0 then x   A   I  0  0 1 thus A   I  0 is the condition for an eigenvalue.  a11     A   I  det   an1   = 0  ann    a1n = polynomial of degree n in . Hence there are n possible eigenvalues 1, … , n Thereom If the matrix A is symmetric then the eigenvalues of A, 1, … , n,are real. Thereom If the matrix A is positive definite then the eigenvalues of A, 1, … , n, are positive. Proof A is positive definite if xAx  0 if x  0 Let  and x be an eigenvalue and corresponding eigenvector of A. then Ax   x xx and xAx   xx , or   0 xAx Thereom If the matrix A is symmetric and the eigenvalues of A are 1, … , n, with corresponding eigenvectors x1 , , xn i.e. Axi  i xi If i ≠ j then xix j  0 Proof: Note xj Axi  i xj xi and xiAx j   j xix j 0   i   j  xix j hence xix j  0 Thereom If the matrix A is symmetric with distinct eigenvalues, 1, … , n, with corresponding eigenvectors x1 , , xn Assume xixi  1 then A  1 x1 x1    x1 ,  n xn xn 0   x1  1      PDP , xn      0 n   xn  proof Note xixi  1 and xix j  0 if i  j  x1    PP     x1 ,  xn  1   0  x1x1  , xn     xn x1 0 I  1  x1xn    xn xn  P is called an orthogonal matrix therefore P  P and PP  PP  I . thus  x1    I  PP   x1 , , xn     x1 x1   xn xn  xn  now Axi  1 xi and Axi xi  i xi xi Ax1 x1  A  x1 x1  1 1  Axn xn  1 x1 x1   n xn xn  xn xn   1x1x1   n xn xn A  1 x1 x1   n xn xn Comment The previous result is also true if the eigenvalues are not distinct. Namely if the matrix A is symmetric with eigenvalues, 1, … , n, with corresponding eigenvectors of unit length x1 , , xn then A  1 x1 x1    x1 ,  n xn xn 0   x1  1      PDP , xn      0 n   xn  An algorithm for computing eigenvectors, eigenvalues of positive definite matrices • Generally to compute eigenvalues of a matrix we need to first solve the equation for all values of . – |A – I| = 0 (a polynomial of degree n in )  • Then solve the equation for the eigenvector , x ,   Ax  x Recall that if A is positive definite then A  1 x1 x1   n xn xn    where x1 , x2 ,, xn are the orthogonal eigenvecto rs      of length 1. i.e. xi xi  1 and xi x j  0 if i  j    and 1  2    n  0 are the eigenvalue s It can be shown that    2 2 2 2 A  1 x1  x1  2 x2  x2    n xn  xn    m m m m and that A  1 x1  x1  2 x2  x2    n xn  xn m      m         m m   n 2  1  x1  x1    x2  x2      xn  xn   1 x1  x1    1   1  Thus for large values of m   m A  a constant x1  x1 The algorithim 1. Compute powers of A - A2 , A4 , A8 , A16 , ... 2. Rescale (so that largest element is 1 (say)) 3. Continue until there is no change, The   m resulting matrix will be A  cx1  x1      m 4. Find b so that A  b  b   cx1  x1 5. Find  x1    1    b and 1 using Ax1  1 x1 b  b  To find x2 and 2 Note :       A  1 x1  x1  2 x2  x2    n xn  xn 6. Repeat steps 1 to 5 with the above matrix  to find x2 and 2 7. Continue to find    x3 and 3 , x4 and 4 ,, xn and n Example A= eigenvalue eignvctr 5 4 2 4 10 1 1 12.54461 0.496986 0.849957 0.174869 2 1 2 2 3.589204 0.677344 -0.50594 0.534074 3 0.866182 0.542412 -0.14698 -0.82716 Differentiation with respect to a vector, matrix Differentiation with respect to a vector Let x denote a p × 1 vector. Let f  x  denote a function of the components of x .  df  x      dx1  df  x       dx  df  x    dx  p   Rules 1. Suppose f  x   ax  a1x1   an xn  f  x      x1   a1  df  x      then   a   dx  f  x    a p   x  p   2. Suppose f  x   xAx  a11x12  2a12 x1 x2  2a13 x1 x3   a pp x2p   2a p 1, p x p 1 x p  f  x      x1  df  x     2 Ax then    dx  f  x    x  p   i.e. f  x  xi  2ai1 x1   2aii xi   2aip x p Example 1. Determine when f  x   xAx  bx  c is a maximum or minimum. solution df  x  dx  2 Ax  b  0 or x   12 A1b 2. Determine when f  x   xAx is a maximum if xx  1. Assume A is a positive definite matrix. solution let g  x   xAx   1  xx   is the Lagrange multiplier. dg  x  dx  2 Ax  2 x  0 or Ax   x This shows that x is an eigenvector of A. and f  x   xAx   xx   Thus x is the eigenvector of A associated with the largest eigenvalue, . Differentiation with respect to a matrix Let X denote a q × p matrix. Let f (X) denote a function of the components of X then:  f  X   x11  df  X   f  X        xij   dX    f  X    x q1  f  X    x1 p    f  X    x pp  Example Let X denote a p × p matrix. Let f (X) = ln |X| then d ln X dX X Solution X  xi1 X i1  1  xij X ij   xip X ip Note Xij are cofactors  ln X xij 1  X ij = (i,j)th element of X-1 X Example Let X and A denote p × p matrices. Let f (X) = tr (AX) then Solution p d tr  AX  p dX tr  AX    aik xki k 1 k 1 tr  AX  xij  a ji  A Differentiation of a matrix of functions Let U = (uij) denote a q × p matrix of functions of x then:  du11  dx  dU  duij    dx  dx   duq1   dx du1 p   dx   duqp   dx  Rules: 1. 2. 3. d  aU  dx dU a dx d U  V  dx d UV  dx dU dV   dx dx dU dV  V U dx dx 4.  d U 1 dx Proof:   U 1 dU 1 U dx U 1U  I 1 dU 1 dU U U  0 dx dx p p 1 dU 1 dU U  U dx dx 1 dU 1 dU  U U 1 dx dx 5. dtrAU  dU   tr  A  dx  dx  p p Proof: tr  AU    aik uki i 1 k 1 tr  AU  x 6. dtrAU dx 1 uki  dU    aik  tr  A  x  dx  i 1 k 1 p p  1 dU 1   tr  AU U  dx   dtrAX 1  ij  1   tr E X AX 1 dxij  7. E  kl   kl   kl   (eij ) where eij  1 i  k , j  l  0 otherwise Proof: dtrAX dxij 8. 1   1 dX 1  tr   AX X    tr AX 1 E  ij  X 1   dx ij    ij  1   tr E X AX 1    dtrAX 1   X 1 AX 1 dX  The Generalized Inverse of a matrix Recall B (denoted by A-1) is called the inverse of A if AB = BA = I • A-1 does not exist for all matrices A • A-1 exists only if A is a square matrix and |A| ≠ 0 • If A-1 exists then the system of linear equations Ax  b has a unique solution 1 xA b Definition B (denoted by A-) is called the generalized inverse (Moore – Penrose inverse) of A if 1. ABA = A 2. BAB = B 3. (AB)' = AB 4. (BA)' = BA Note: A- is unique Proof: Let B1 and B2 satisfying 1. ABiA = A 2. BiABi = Bi 3. (ABi)' = ABi 4. (BiA)' = BiA Hence B1 = B1AB1 = B1AB2AB1 = B1 (AB2)'(AB1) ' = B1B2'A'B1'A'= B1B2'A' = B1AB2 = B1AB2AB2 = (B1A)(B2A)B2 = (B1A)'(B2A)'B2 = A'B1'A'B2'B2 = A'B2'B2= (B2A)'B2 = B2AB2 = B2 The general solution of a system of Equations Ax  b The general solution x  A b   I  A A z  b   I  where A A  z is arbitrary  Suppose a solution exists Ax0  b Let x  Ab   I  A A  z then Ax  A  Ab   I  A A z       AA b   A  AA A z    AA Ax0  Ax0  b Calculation of the Moore-Penrose g-inverse Let A be a p×q matrix of rank q < p, then A   AA  A  Proof thus also     A A A A   1     A  A  A A  1 A A  I AA A  AI  A and A AA  IA  A A A  I is symmetric   and AA  A A A  1 A is symmetric 1 Let B be a p×q matrix of rank p < q, then B  B  BB   Proof thus     BB  B  B BB   1     BB  BB  1 I BB  B  IB  B and B  BB   B  I  B  BB  I is symmetric also   and B B  B BB  1 B is symmetric 1 Let C be a p×q matrix of rank k < min(p,q), then C = AB where A is a p×k matrix of rank k and B is a k×q matrix of rank k then C  B  BB   Proof 1  AA A 1    A A  CC   AB  B BB  is symmetric, as well as     1 1    A  A A A  1            A 1 1 1   C C   B BB A A A AB  B BB B   1   Also CC C   A A A A AB  AB  C   1 1 1     and C CC    B BB B   B BB A A A    1  1  B BB A A A  C