Download Example Rationalize DeNom

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chabot Mathematics
§7.5 Denom
Rationalize
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Chabot College Mathematics
1
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Review § 7.4
MTH 55
 Any QUESTIONS About
• §7.4 → Add, Subtract, Divide Radicals
 Any QUESTIONS About HomeWork
• §7.4 → HW-28
Chabot College Mathematics
2
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Multiply Radicals
 Radical expressions often contain
factors that have more than one
term.
 Multiplying such expressions is
similar to finding products of
polynomials.
 Some products will yield like radical
terms, which we can now combine.
Chabot College Mathematics
3
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Example  Multiply Radicals
 Find the Product for
3 6

5 7 7

 SOLUTION
3 6

5 7 7

 3 6  5  3 6 7 7
 3 30  21 42
Chabot College Mathematics
4
Use the distributive
property.
Multiply.
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Example  Multiply Radicals

 Find the Product for 4 5  2


5 5 2 .
 SOLUTION (F.O.I.L.-like)
4
5 2

5 5 2

 4 55  5 4 5 2  5 2  5 2 2
 4  5  20 10  10  5  2
Use the product rule.
 20  20 10  10  10
Find the products.
 10  19 10
Combine like radicals.
Chabot College Mathematics
5
Use the distributive
property.
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Example  Multiply Radicals

 Find the Product for
5 3

2
 SOLUTION

  5
2
5 3 
2
 2  15  3 
 5  2 15  3
 3
2
Use (a – b)2 = a2 – 2ab – b2
Simplify.
 8  2 15
Chabot College Mathematics
6
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Example  Multiply Radicals


 Find the Product for 8  3 8  3

 SOLUTION


8 3 8 3

8 
2
 
 64  3
3
2
Use (a + b)(a – b) = a2 – b2.
Simplify.
 61
Chabot College Mathematics
7
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Example  Multiply Radicals
 Perform
MultiTerm
Multiplication
2( y  7)
a)
b)

c)


3 x  2  3 x2  3 


m n


m n

 SOLUTION a)
a)
2( y  7)  2  y  2  7
Using the
distributive law
 y 2  14
Chabot College Mathematics
8
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
a) 2( yRadicals
 7)
Example  Multiply
 Perform
MultiTerm
Multiplication
b)

c)

 SOLUTION b)
b)



3 x  2  3 x2  3 


m n
F

O

m n
I
L
3 x  2  3 x 2  3   3 x 3 x 2  33 x  2 3 x 2  6




3 3
3 2
3
x 3 x  2 x 6
3 2
3
 x3 x 2 x 6
Chabot College Mathematics
9

Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
2( y  7)
a)
3 2


3
Example  Multiply
Radicals
b)  x  2   x  3 
 Perform MultiTerm
c)
Multiplication


m n


m n
 SOLUTION c)
c)

m n

m n
F

 m  (
2

O
I
L
m n  m n)
 n
mn
Chabot College Mathematics
10
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
2

Radical Conjugates
 In part (c) of the last example,
notice that the inner and outer
products in F.O.I.L. are opposites,
the result, m – n, is not itself a
radical expression. Pairs of radical
terms like, m  n and m  n ,
are called conjugates.
Chabot College Mathematics
11
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Mult. Radicals by Special Prods
 Multiplication of expressions that
contain radicals is very similar to the
multiplication of polynomials
Chabot College Mathematics
12
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Mult. Radicals by Special Prods
 Compare F.O.I.L. and Square of a
BiNomial-Sum
FOIL Method
Chabot College Mathematics
13
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Rationalize DeNominator
 When a radical expression appears in a
denominator, it can be useful to find an
equivalent expression in which the
denominator NO LONGER contains a
RADICAL. The procedure for finding
such an expression is called
rationalizing the denominator.
 We carry this out by multiplying
by 1 in either of two ways.
Chabot College Mathematics
14
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Rationalize → Method-1
 One way is to multiply by 1 under the
radical to make the denominator of the
radicand a perfect power.
a)
 EXAMPLE  Rationalize Denom:
a)
5
57

7
77
5
7
3
Multiplying by 1 under the 3radical
b)
25
35
35
35



49
7
49
Chabot College Mathematics
15
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Example 
5
a)
Rationalize
7
 Rationalize DeNom:
b)
3
DeNom
3
25
 SOLUTION
b) 3
3 3 3 5 Since the index is 3, we need 3

 identical factors in the denom.
25
55 5
3
Chabot College Mathematics
16
15
53

3 15
3 3
5

3 15
5
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Rationalize → Method-2
 Another way to rationalize a DeNom is
to multiply by 1 outside the radical.
5
 EXAMPLE  Rationalize Denom:
a)
3x
5
5
3y
5
3
x
a)

b)
Multiplying
by 1


3x
3 4 xy 2
3x
3x 3x

Chabot College Mathematics
17
15 x

3x

2
15 x

3x
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
5
a)
3x
Example  Rationalize
3y
b)
 Rationalize DeNom:
3 4 xy 2
 SOLNb)
3y
3 4 xy 2


Chabot College Mathematics
18
3y

DeNom
3 2 x2 y
3 4 xy 2 3 2 x 2 y
2
3
3 y 2x y
3 8 x3 y 3
3 y 3 2 x 2 y 33 2 x 2 y


2 xy
2x
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Example  Rationalize DeNom
 Rationalize the denominator.
Assume variables are >0
7
3
2
16x
 SOLN
3
3
3
7
7
7
4x
3



2
3
3
2
3
2
16x
4x
16x
16 x

Chabot College Mathematics
19
3
3
28 x
64 x 3
3
28 x

4x
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Rationalize 2-Term Rad DeNoms
 Recall the Difference-of-2Sqs Product
results in the O & I terms in the FOIL
Multiplication Adding to Zero
 To Rationalize a DeNominator that
contains two Radical Terms requires the
use of Conjugates (which have a Diff-ofSqs form) to remove the radicals from
the Denom
Chabot College Mathematics
20
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Rationalize 2-Term Rad DeNoms
 For Example to Rationalize
the Denom of
 Multiply the Numerator & Denominator
by the CONJUGATE of the Original
Denominator
5 2
45  4 2


5 2 5 2 5 2


20  4 2
5 5 2 5 2 
2
Chabot College Mathematics
21

 2
2

20  4 2 20  4 2


25  2
23
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Example  Rationalize DeNom
 Rationalize the denominator:
 SOLUTION
5
5
7y

.
7y
7y 7y


Chabot College Mathematics
22
5


7y
7y


7y
5
.
7y
Multiplying by 1 using
the conjugate

5 7  5y
7  y2
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Example  Rationalize DeNom
5 3
 Rationalize the denominator:
.
3 5
 SOLUTION
5 3
5 3
3  5 Multiplying by 1 using


3 5
3  5 3  5 the conjugate
5  3  3  5 

5


 3  5  3  5 
35 5  3 3  3 5
 3   5
2
2
5 3  5 5  3  15 5 3  5 5  3  15


35
2
Chabot College Mathematics
23
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Rationalize Numerator
 To rationalize a numerator with more
than one term, use the conjugate of the
numerator
 Example  Rationalize numerator
5  3x
6
 SOLUTION
5  3x
6
5  3x 5  3x


6
5  3x
5 
2

Chabot College Mathematics
24


6 5

3x 
2
3x
25  3x

30  6 3x
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
WhiteBoard Work
 Problems From §7.5 Exercise Set
• 22, 38, 64, 74, 92, 128 → Derive φ

The
Golden Ratio
φ (phi)
Chabot College Mathematics
25
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
All Done for Today
L. Da Vinci
Used The
Golden Ratio
 Typo in Book for 2
1/GoldenRatio
5 1
Chabot College Mathematics
26
2
5 1
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Chabot Mathematics
Appendix
r  s  r  s r  s 
2
2
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
–
Chabot College Mathematics
27
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
Graph y = |x|
6
 Make T-table
x
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
Chabot College Mathematics
28
5
y = |x |
6
5
4
3
2
1
0
1
2
3
4
5
6
y
4
3
2
1
x
0
-6
-5
-4
-3
-2
-1
0
1
2
3
-1
-2
-3
-4
-5
file =XY_Plot_0211.xls
-6
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
4
5
6
5
5
y
4
4
3
3
2
2
1
1
0
-10
-8
-6
-4
-2
-2
-1
0
2
4
6
-1
0
-3
x
0
1
2
3
4
5
-2
-1
-3
-2
M55_§JBerland_Graphs_0806.xls
-3
Chabot College Mathematics
29
-4
M55_§JBerland_Graphs_0806.xls
-5
Bruce Mayer, PE
[email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt
8
10