Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chabot Mathematics §7.5 Denom Rationalize Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Chabot College Mathematics 1 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Review § 7.4 MTH 55 Any QUESTIONS About • §7.4 → Add, Subtract, Divide Radicals Any QUESTIONS About HomeWork • §7.4 → HW-28 Chabot College Mathematics 2 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Multiply Radicals Radical expressions often contain factors that have more than one term. Multiplying such expressions is similar to finding products of polynomials. Some products will yield like radical terms, which we can now combine. Chabot College Mathematics 3 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Example Multiply Radicals Find the Product for 3 6 5 7 7 SOLUTION 3 6 5 7 7 3 6 5 3 6 7 7 3 30 21 42 Chabot College Mathematics 4 Use the distributive property. Multiply. Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Example Multiply Radicals Find the Product for 4 5 2 5 5 2 . SOLUTION (F.O.I.L.-like) 4 5 2 5 5 2 4 55 5 4 5 2 5 2 5 2 2 4 5 20 10 10 5 2 Use the product rule. 20 20 10 10 10 Find the products. 10 19 10 Combine like radicals. Chabot College Mathematics 5 Use the distributive property. Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Example Multiply Radicals Find the Product for 5 3 2 SOLUTION 5 2 5 3 2 2 15 3 5 2 15 3 3 2 Use (a – b)2 = a2 – 2ab – b2 Simplify. 8 2 15 Chabot College Mathematics 6 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Example Multiply Radicals Find the Product for 8 3 8 3 SOLUTION 8 3 8 3 8 2 64 3 3 2 Use (a + b)(a – b) = a2 – b2. Simplify. 61 Chabot College Mathematics 7 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Example Multiply Radicals Perform MultiTerm Multiplication 2( y 7) a) b) c) 3 x 2 3 x2 3 m n m n SOLUTION a) a) 2( y 7) 2 y 2 7 Using the distributive law y 2 14 Chabot College Mathematics 8 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt a) 2( yRadicals 7) Example Multiply Perform MultiTerm Multiplication b) c) SOLUTION b) b) 3 x 2 3 x2 3 m n F O m n I L 3 x 2 3 x 2 3 3 x 3 x 2 33 x 2 3 x 2 6 3 3 3 2 3 x 3 x 2 x 6 3 2 3 x3 x 2 x 6 Chabot College Mathematics 9 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt 2( y 7) a) 3 2 3 Example Multiply Radicals b) x 2 x 3 Perform MultiTerm c) Multiplication m n m n SOLUTION c) c) m n m n F m ( 2 O I L m n m n) n mn Chabot College Mathematics 10 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt 2 Radical Conjugates In part (c) of the last example, notice that the inner and outer products in F.O.I.L. are opposites, the result, m – n, is not itself a radical expression. Pairs of radical terms like, m n and m n , are called conjugates. Chabot College Mathematics 11 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Mult. Radicals by Special Prods Multiplication of expressions that contain radicals is very similar to the multiplication of polynomials Chabot College Mathematics 12 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Mult. Radicals by Special Prods Compare F.O.I.L. and Square of a BiNomial-Sum FOIL Method Chabot College Mathematics 13 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Rationalize DeNominator When a radical expression appears in a denominator, it can be useful to find an equivalent expression in which the denominator NO LONGER contains a RADICAL. The procedure for finding such an expression is called rationalizing the denominator. We carry this out by multiplying by 1 in either of two ways. Chabot College Mathematics 14 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Rationalize → Method-1 One way is to multiply by 1 under the radical to make the denominator of the radicand a perfect power. a) EXAMPLE Rationalize Denom: a) 5 57 7 77 5 7 3 Multiplying by 1 under the 3radical b) 25 35 35 35 49 7 49 Chabot College Mathematics 15 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Example 5 a) Rationalize 7 Rationalize DeNom: b) 3 DeNom 3 25 SOLUTION b) 3 3 3 3 5 Since the index is 3, we need 3 identical factors in the denom. 25 55 5 3 Chabot College Mathematics 16 15 53 3 15 3 3 5 3 15 5 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Rationalize → Method-2 Another way to rationalize a DeNom is to multiply by 1 outside the radical. 5 EXAMPLE Rationalize Denom: a) 3x 5 5 3y 5 3 x a) b) Multiplying by 1 3x 3 4 xy 2 3x 3x 3x Chabot College Mathematics 17 15 x 3x 2 15 x 3x Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt 5 a) 3x Example Rationalize 3y b) Rationalize DeNom: 3 4 xy 2 SOLNb) 3y 3 4 xy 2 Chabot College Mathematics 18 3y DeNom 3 2 x2 y 3 4 xy 2 3 2 x 2 y 2 3 3 y 2x y 3 8 x3 y 3 3 y 3 2 x 2 y 33 2 x 2 y 2 xy 2x Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Example Rationalize DeNom Rationalize the denominator. Assume variables are >0 7 3 2 16x SOLN 3 3 3 7 7 7 4x 3 2 3 3 2 3 2 16x 4x 16x 16 x Chabot College Mathematics 19 3 3 28 x 64 x 3 3 28 x 4x Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Rationalize 2-Term Rad DeNoms Recall the Difference-of-2Sqs Product results in the O & I terms in the FOIL Multiplication Adding to Zero To Rationalize a DeNominator that contains two Radical Terms requires the use of Conjugates (which have a Diff-ofSqs form) to remove the radicals from the Denom Chabot College Mathematics 20 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Rationalize 2-Term Rad DeNoms For Example to Rationalize the Denom of Multiply the Numerator & Denominator by the CONJUGATE of the Original Denominator 5 2 45 4 2 5 2 5 2 5 2 20 4 2 5 5 2 5 2 2 Chabot College Mathematics 21 2 2 20 4 2 20 4 2 25 2 23 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Example Rationalize DeNom Rationalize the denominator: SOLUTION 5 5 7y . 7y 7y 7y Chabot College Mathematics 22 5 7y 7y 7y 5 . 7y Multiplying by 1 using the conjugate 5 7 5y 7 y2 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Example Rationalize DeNom 5 3 Rationalize the denominator: . 3 5 SOLUTION 5 3 5 3 3 5 Multiplying by 1 using 3 5 3 5 3 5 the conjugate 5 3 3 5 5 3 5 3 5 35 5 3 3 3 5 3 5 2 2 5 3 5 5 3 15 5 3 5 5 3 15 35 2 Chabot College Mathematics 23 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Rationalize Numerator To rationalize a numerator with more than one term, use the conjugate of the numerator Example Rationalize numerator 5 3x 6 SOLUTION 5 3x 6 5 3x 5 3x 6 5 3x 5 2 Chabot College Mathematics 24 6 5 3x 2 3x 25 3x 30 6 3x Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt WhiteBoard Work Problems From §7.5 Exercise Set • 22, 38, 64, 74, 92, 128 → Derive φ The Golden Ratio φ (phi) Chabot College Mathematics 25 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt All Done for Today L. Da Vinci Used The Golden Ratio Typo in Book for 2 1/GoldenRatio 5 1 Chabot College Mathematics 26 2 5 1 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Chabot Mathematics Appendix r s r s r s 2 2 Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] – Chabot College Mathematics 27 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt Graph y = |x| 6 Make T-table x -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Chabot College Mathematics 28 5 y = |x | 6 5 4 3 2 1 0 1 2 3 4 5 6 y 4 3 2 1 x 0 -6 -5 -4 -3 -2 -1 0 1 2 3 -1 -2 -3 -4 -5 file =XY_Plot_0211.xls -6 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt 4 5 6 5 5 y 4 4 3 3 2 2 1 1 0 -10 -8 -6 -4 -2 -2 -1 0 2 4 6 -1 0 -3 x 0 1 2 3 4 5 -2 -1 -3 -2 M55_§JBerland_Graphs_0806.xls -3 Chabot College Mathematics 29 -4 M55_§JBerland_Graphs_0806.xls -5 Bruce Mayer, PE [email protected] • MTH55_Lec-44_sec_7-5_Rationalize_Denoms.ppt 8 10