Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Ch. 1 First-Order ODEs Ch. 1 First-Order ODEs Ordinary differential equations (ODEs) • Deriving them from physical or other problems (modeling) • Solving them by standard methods • Interpreting solutions and their graphs in terms of a given problem Ch. 1 First-Order ODEs 1.1 Basic Concepts. Modeling 1.1 Basic Concepts. Modeling Differential Equation : An equation containing derivatives of an unknown function Ordinary Differential Equation Differential Equation Partial Differential Equation Ordinary Differential Equation : An equation that contains one or several derivatives of an unknown function of one independent variable Ex. y ' cos x, y '' 9 y 0, x 2 y ''' y ' 2e x y '' x 2 2 y 2 Partial Differential Equation : An equation involving partial derivatives of an unknown function of two or more variables Ex. 2u 2u 0 x 2 y 2 Ch. 1 First-Order ODEs 1.1 Basic Concepts. Modeling Order : The highest derivative of the unknown function Ex. (1) y ' cos x (2) y '' 9 y 0 First order Second order (3) x 2 y ''' y ' 2e x y '' x 2 2 y 2 Third order First-order ODE : Equations contain only the first derivative y ' and may contain y and any given functions of x • Explicit Form : y ' f x, y • Implicit Form : F x, y, y ' 0 Ch. 1 First-Order ODEs 1.1 Basic Concepts. Modeling Solution : Functions that make the equation hold true • General Solution : a solution containing an arbitrary constant Solution • Particular Solution : a solution that we choose a specific constant • Singular Solution : an additional solution that cannot be obtained from the general solution Ex.(Problem 16) ODE : y ' xy ' y 0 2 2 General solution : y cx c Particular solution : y 2 x 4 Singular solution : y x 2 / 4 Ch. 1 First-Order ODEs 1.1 Basic Concepts. Modeling Initial Value Problems : An ordinary differential equation together with specified value of the unknown function at a given point in the domain of the solution y ' f x, y , y x0 y0 Ex.4 Solve the initial value problem y' dy 3 y, dx y 0 5.7 Step 1 Find the general solution. (see Example 3.) General solution : y x ce3x Step 2 Apply the initial condition. y 0 ce0 c 5.7 Particular solution : y x 5.7e3 x Ch. 1 First-Order ODEs 1.1 Basic Concepts. Modeling Modeling The typical steps of modeling in detail Step 1. The transition from the physical situation to its mathematical formulation Step 2. The solution by a mathematical method Step 3. The physical interpretation of differential equations and their applications Ch. 1 First-Order ODEs 1.1 Basic Concepts. Modeling Ex. 5 Given an amount of a radioactive substance, say 0.5 g(gram), find the amount present at any later time. Physical Information. Experiments show that at each instant a radioactive substance decays at a rate proportional to the amount present. Step 1 Setting up a mathematical model(a differential equation) of the physical process. By the physical law : dy y dt dy ky dt The initial condition : y 0 0.5 Step 2 Mathematical solution. General solution : y t cekt 0 Particular solution : y 0 ce c 0.5 Always check your result : dy 0.5kekt ky, dt Step 3 Interpretation of result. The limit of y as t is zero. y t 0.5ekt y 0 0.5e0 0.5 Ch. 1 First-Order ODEs 1.2 Geometric Meaning of y` = f ( x , y ). Direction Fields 1.2 Geometric Meaning of y` = f ( x , y ). Direction Fields Direction Field , y’=f(x,y) represents the slope of y(x) For example, y’ = xy - short straight line segments, lineal elements, can be drawn in xy-plane - An approximate solution by connecting lineal elements, Fig.7(a) Reason of importance of the direction field • You do not have to solve the ODE to find y(x). • The method shows the whole family of solutions and their typical properties., but its accuracy is limited Ch. 1 First-Order ODEs Fig.7 CAS means computer algebra system (y(x)=1.213e^x^2/2) In this way, approximate sol is obtained. But it is sufficient. The exact solution can be obtained by the methods, in the following sections Ch. 1 First-Order ODEs 1.3 Separable ODEs. Modeling 1.3 Separable ODEs. Modeling Separable Equation : g y y ' f x A differential equation to be separable all the y ’s in the differential equation is on the one side and all the x ’s is on the differential equation is on the other side of the equal sign. Method of Separating Variables g y y' f x Ex. 1 Solve y' 1 1 y2 gy dy f x dx c dy dx dy dx y ' 1 y2 dy / dx 1 1 y2 1 1 y 2 dy dx c dy dx 1 y2 arctan y x c y tan x c Ch. 1 First-Order ODEs 1.3 Separable ODEs. Modeling Modeling Ex. 3 Mixing problems occur frequently in chemical industry. We explain here how to solve the basic model involving a single tank. The tank in Fig.9 contains 1000gal of water in which initially 100lb of salt is dissolved. Brine runs in at a rate of 10gal/min, and each gallon contains 5lb of dissolved salt. The mixture in the tank is kept uniform by stirring. Brine runs out at 10 gal/min. Find the amount of salt in the tank at any time t. Step 1 Setting up a model. ▶ Salt’s time rate of change dy / dt y' = Salt inflow rate – Salt outflow rate “Balance law” Salt inflow rate = 10 gal/min × 5 lb/gal = 50 lb/min Salt outflow rate = 10 gal/min × y/1000 lb/gal = y/100 lb/min y ' 50 ▶ The initial condition : y 1 5000 y 100 100 y0 100 Step 2 Solution of the model. ▶ General solution : ▶ Particular solution : dy 1 dt y 5000 100 ln y 5000 1 t c* 100 y0 5000 ce 5000 c 100 c 4900 0 y 5000 ce y 5000 4900e t 100 t 100 Ch. 1 First-Order ODEs 1.3 Separable ODEs. Modeling Extended Method : Reduction to Separable Form Certain first order equations that are not separable can be made separable by a simple change of variables. y ▶ A homogeneous ODE y ' f can be reduced to separable form by the substitution of y=ux x y y ' f u ' x u f u x du dx y & y ' ux ' u ' x u y ux u f u u x x Ex. 6 Solve 2 xyy' y 2 x 2 2 xyy ' y 2 x 2 1 y x y' 2 x y c u 1 x 2 1 1 u ' x u u 2 u 2 c y 1 x x x 2 y 2 cx 2u 1 du dx u 1 x 2 Ch. 1 First-Order ODEs 1.4 Exact ODEs, Integrating Factors 1.4 Exact ODEs, Integrating Factors Exact Differential Equation : The ODE M(x , y)dx +N(x , y)dy =0 whose the differential form M(x , y)dx +N(x , y)dy is exact, that is, this form is the differential du u u dx dy . x y If ODE is an exact differential equation, then M x, y dx N x, y dy 0 Condition for exactness : du 0 M N y x u x, y c M u 2u u N y y x xy x y x Solve the exact differential equation • M x, y u x u x, y M x, y dx k y • N x, y u y u x, y N x, y dy l x u N x, y y u M x, y x get dk & k y dy get dl & l x dx Ch. 1 First-Order ODEs Ex. 1 Solve 1.4 Exact ODEs, Integrating Factors cos x y dx 3 y 2 2 y cos x y dy 0 Step 1 Test for exactness. M sin x y y N N x, y 3 y 2 2 y cos x y sin x y x M x, y cos x y M N y x Step 2 Implicit general solution. u x, y M x, y dx k y cos x y dx k y sin x y k y u dk cos x y N x, y y dy dk 3y2 2 y dy k y3 y 2 c * u x, y sin x y y3 y 2 c Step 3 Checking an implicit solution. u cos x y cos x y y ' 3 y 2 y ' 2 yy ' 0 x cos x y cos x y 3 y 2 2 y y ' 0 cos x y dx 3 y 2 2 y cos x y dy 0 Ch. 1 First-Order ODEs 1.4 Exact ODEs, Integrating Factors Reduction to Exact Form, Integrating Factors Some equations can be made exact by multiplication by some function, F x, y 0, which is usually called the Integrating Factor. Ex. 3 Consider the equation ydx xdy 0 y 1, y If we multiply it by 1 x 1 x x 2 That equation is not exact. , we get an exact equation y 1 dx dy 0 2 x x y 1 1 2 2 y x x x x Ch. 1 First-Order ODEs 1.4 Exact ODEs, Integrating Factors How to Find Integrating Factors FPdx FQdy 0 The exactness condition : FP FQ y x F P F Q PF PF y y x x Golden Rule : If you cannot solve your problem, try to solve a simpler one. Hence we look for an integrating factor depending only on one variable. Case 1) F F x FPy F ' Q FQx Case 2) F * F * y F F F', 0 x y 1 dF 1 P Q R x where R x F dx Q y x F x exp R x dx 1 dF * 1 Q P R * where R* F * y exp F * dx P x y R * y dy Ch. 1 First-Order ODEs 1.4 Exact ODEs, Integrating Factors Ex. Find an integrating factor and solve the initial value problem e x y ye y dx xe y 1 dy 0, y 0 1 Step 1 Nonexactness. Px, y e x y ye y Qx, y xey 1 P e x y e y ye y y Q ey x P Q y x Step 2 Integrating factor. General solution. R 1 P Q 1 1 x y y y y x y y y e e ye e y e ye Q y x xe 1 xe 1 R* 1 Q P 1 e y e x y e y ye y 1 x y y P x y e ye e x Fails. F * y e y y dx x e y dy 0 is the exact equation. u e x y dx e x xy k y u x k ' y x e y y k ' y e y , k y e y The general solution is u x, y e x xy e y c Step 3 Particular solution y 0 1 u 0, 1 e0 0 e 3.72 u x, y e x xy e y 3.72 Ch. 1 First-Order ODEs 1.5 Linear ODEs. Bernoulli Equation. Population Dynamics 1.5 Linear ODEs. Bernoulli Equation. Population Dynamics Homogeneous Linear ODEs Linear ODEs ODEs Nonhomogeneous Linear ODEs Nonlinear ODEs Linear ODEs : ODEs which is linear in both the unknown function and its derivative. Ex. y ' p x y r x : Linear differential equation y ' p x y r x y 2: Nonlinear differential equation • Standard Form : y ' p x y r x ( r(x) : Input, y(x) : Output ) Homogeneous, Nonhomogeneous Linear ODE y ' p x y 0 : Homogeneous Linear ODE y ' p x y r x 0 : Nonhomogeneous Linear ODE Ch. 1 First-Order ODEs 1.5 Linear ODEs. Bernoulli Equation. Population Dynamics Homogeneous Linear ODE.(Apply the method of separating variables) y ' p x y 0 dy p x dx y ln y p x dx c * p x dx y ce Nonhomogeneous Linear ODE.(Find integrating factor and solve ) y ' p x y r x • Find integrating factor. • Solve e R py r dx e pdx 1 P Q p Q y x is not exact py r p 0 1 y x 1 dF p F dx F e pdx dy 0 pdx pdx pdx pdx u pye l ' x e py r l ' x re , l x re dx c x pdx pdx pdx pdx pdx pdx u ye re dx c ye re dx c y e re dx c u ye pdx py r dx dy 0 pdx l x Ex. 1 Solve the linear ODE y ' y e 2 x p 1, r e2 x , h pdx x y e h e h rdx c e x e xe 2 x dx c e x e x c e 2 x ce x Ch. 1 First-Order ODEs 1.5 Linear ODEs. Bernoulli Equation. Population Dynamics Bernoulli Equation : y ' p x y g x y a a0 &1 1 a We set u x y x u ' 1 a y a y ' 1 a y a gy a py 1 a g py1a 1 a g pu u ' 1 a pu 1 a g : the linear ODE Ex. 4 Logistic Equation Solve the following Bernoulli equation, known as the logistic equation (or Verhulst equation) y ' Ay By 2 y ' Ay By 2 p A, r B y ' Ay By 2 & a 2 u y 1 u ' y 2 y ' y 2 Ay By 2 Ay 1 B Au B h pdx Ax u ' Au B B B & u e h e h rdx c e Ax e Ax c ce Ax A A The general solution of the Verhulst equation is y 1 1 B ce Ax u A