Download 4 Polynomials

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MATLAB
Polynomials
Nafees Ahmed
Asstt. Professor, EE Deptt
DIT, DehraDun
Introduction
 Polynomials
x2+2x-7
x4+3x3-15x2-2x+9
 In MATLAB polynomials are created by row vector i.e.
s4+3s3-15s2-2s+9
>>p=[ 1 3 -15 -2 9];
3x3-9
>>q=[3 0 0 -9]
%write the coefficients of every term

Polynomial evaluation : polyval(c,s)
Exp: Evaluate the value of polynomial y=2s2+3s+4 at s=1, -3
>>y=[2 3 4];
>>s=1;
>>value=polyval(y, s)
>>value =
9
Polynomials Evaluation
 Similarly
>>s=-3;
>>value=polyval(y, s)
>>value =
13
OR
>>s=[1 -3];
>> value=polyval(y, s)
value =
9 13
OR
>> value=polyval(y,[1 -3])
Roots of Polynomials
Roots of polynomials: roots(p)
>>p=[1 3 2];
>>r=roots(p)
r = -2
-1
% p=s2+3s+2
Try this: find the roots of s4+3s3-15s2-2s+9=0
Polynomials mathematics
• Addition
>>a=[0 1 2 1];
>>b=[1 0 1 5];
>>c=a+b
• Subtraction
>>a=[3 0 0 2];
>>b=[0 0 1 7];
>>c=b-a
c=
-3
0
1
%s2+2s+1
% s3+s+1
%s3+s2+3s+6
%s3+2
%s+7
%-s3+s+5
5
Polynomials mathematics
• Multiplication : Multiplication is done by convolution operation .
Sytnax z= conv(x, y)
>>a=[1 2 ];
%s+2
>>b=[1 4 8 ];
% s2+4s+8
>>c=conv(a, b)
% s3+6s2+16s+16
c=
1
6
16
16
Try this: find the product of (s+3),(s+6) & (s+2). Hint: two at a time
• Division : Division is done by deconvolution operation.
Syntax is [z, r]=deconv(x, y)
Where
x=divident vector
y=divisor vector
z=Quotients vector
r=remainders vector
Polynomials mathematics
>>a=[1 6 16 16];
>>b=[1 4 8];
>>[c, r]=deconv(a, b)
c=
1 2
r=
0 0 0
0
Try this: divide s2-1 by s+1
%a=s3+6s2+16s+16
%b=s2+4s+8
Formulation of Polynomials
• Making polynomial from given roots:
>>r=[-1 -2];
%Roots of polynomial are -1 & -2
>>p=poly(r);
%p=s2+3s+2
p=
1 3 2
• Characteristic Polynomial/Equation of matrix ‘A”: =det(sI-A)
>>A=[0 1; 2 3];
>>p=poly(A)
%p= determinant (sI-A)
p=
%p=s2-3s-2
1 -3 -2
Polynomials Differentiation & Integration
Polynomial differentiation : syntax is
dydx=polyder(y)
>>y=[1 4 8 0 16];
%y=s4+4s3+8s2+16
>>dydx=polyder(y)
%dydx=4s3+12s2+16s
dydx=
4 12 16
0
Polynomial integration : syntax is
x=polyint (y, k)
%k=constant of integration
OR
x=polyint(y)
%k=0
>>y=[4 12 16 1];
%y=4s3+12s2+16s+1
>>x=polyint(y,3)
%x=s4+4s3+8s2+s+3
x=
1 4
8
1
3(this is k)
Polynomials Curve fitting
In case a set of points are known in terms of vectors x & y, then a
polynomial can be formed that fits the given points. Syntax is
c=polyfit(x, y, k)
%k is degree of polynomial
Ex: Find a polynomial of degree 2 to fit the following data
X
0
1
2
4
Y
1
6
20
100
Sol:
>>x=[0 1 2 4];
>>y=[1 6 20 100];
>>c=polyfit(x, y, 2)
c=
7.3409 -4.8409 1.6818
>>c=polyfit(x, y, 3)
c=
1.0417 1.3750 2.5833
%2nd degree polynomial
%3rd degree polynomial
1.0000
Polynomials Curve fitting
Ex: Find a polynomial of degree 1 to fit the following data
Current
10
15
20
25
30
voltage
100
150
200
250
300
Sol:
>>current=[10 15 20 25 30];
>>voltage=[100 150 200 250 300];
>>resistance=polyfit(current, voltage, 1)
resistance=
10.0000
-0.0000
i.e.
Voltage = 10x Current
Polynomials Evaluation with matrix arguments
Ex: Evaluate the matrix polynomial X2+X+2, given that the square matrix
X= 2 3
4 5
Sol:
>>A=[1 1 2];
>>X=[2 3; 4 5];
>>Z=polyvalm(A,X)
Z=
20 24
32 44
%A= X2+X+2I
%poly+val(evaluate)+m(matix)
Related documents