Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MATLAB Polynomials Nafees Ahmed Asstt. Professor, EE Deptt DIT, DehraDun Introduction Polynomials x2+2x-7 x4+3x3-15x2-2x+9 In MATLAB polynomials are created by row vector i.e. s4+3s3-15s2-2s+9 >>p=[ 1 3 -15 -2 9]; 3x3-9 >>q=[3 0 0 -9] %write the coefficients of every term Polynomial evaluation : polyval(c,s) Exp: Evaluate the value of polynomial y=2s2+3s+4 at s=1, -3 >>y=[2 3 4]; >>s=1; >>value=polyval(y, s) >>value = 9 Polynomials Evaluation Similarly >>s=-3; >>value=polyval(y, s) >>value = 13 OR >>s=[1 -3]; >> value=polyval(y, s) value = 9 13 OR >> value=polyval(y,[1 -3]) Roots of Polynomials Roots of polynomials: roots(p) >>p=[1 3 2]; >>r=roots(p) r = -2 -1 % p=s2+3s+2 Try this: find the roots of s4+3s3-15s2-2s+9=0 Polynomials mathematics • Addition >>a=[0 1 2 1]; >>b=[1 0 1 5]; >>c=a+b • Subtraction >>a=[3 0 0 2]; >>b=[0 0 1 7]; >>c=b-a c= -3 0 1 %s2+2s+1 % s3+s+1 %s3+s2+3s+6 %s3+2 %s+7 %-s3+s+5 5 Polynomials mathematics • Multiplication : Multiplication is done by convolution operation . Sytnax z= conv(x, y) >>a=[1 2 ]; %s+2 >>b=[1 4 8 ]; % s2+4s+8 >>c=conv(a, b) % s3+6s2+16s+16 c= 1 6 16 16 Try this: find the product of (s+3),(s+6) & (s+2). Hint: two at a time • Division : Division is done by deconvolution operation. Syntax is [z, r]=deconv(x, y) Where x=divident vector y=divisor vector z=Quotients vector r=remainders vector Polynomials mathematics >>a=[1 6 16 16]; >>b=[1 4 8]; >>[c, r]=deconv(a, b) c= 1 2 r= 0 0 0 0 Try this: divide s2-1 by s+1 %a=s3+6s2+16s+16 %b=s2+4s+8 Formulation of Polynomials • Making polynomial from given roots: >>r=[-1 -2]; %Roots of polynomial are -1 & -2 >>p=poly(r); %p=s2+3s+2 p= 1 3 2 • Characteristic Polynomial/Equation of matrix ‘A”: =det(sI-A) >>A=[0 1; 2 3]; >>p=poly(A) %p= determinant (sI-A) p= %p=s2-3s-2 1 -3 -2 Polynomials Differentiation & Integration Polynomial differentiation : syntax is dydx=polyder(y) >>y=[1 4 8 0 16]; %y=s4+4s3+8s2+16 >>dydx=polyder(y) %dydx=4s3+12s2+16s dydx= 4 12 16 0 Polynomial integration : syntax is x=polyint (y, k) %k=constant of integration OR x=polyint(y) %k=0 >>y=[4 12 16 1]; %y=4s3+12s2+16s+1 >>x=polyint(y,3) %x=s4+4s3+8s2+s+3 x= 1 4 8 1 3(this is k) Polynomials Curve fitting In case a set of points are known in terms of vectors x & y, then a polynomial can be formed that fits the given points. Syntax is c=polyfit(x, y, k) %k is degree of polynomial Ex: Find a polynomial of degree 2 to fit the following data X 0 1 2 4 Y 1 6 20 100 Sol: >>x=[0 1 2 4]; >>y=[1 6 20 100]; >>c=polyfit(x, y, 2) c= 7.3409 -4.8409 1.6818 >>c=polyfit(x, y, 3) c= 1.0417 1.3750 2.5833 %2nd degree polynomial %3rd degree polynomial 1.0000 Polynomials Curve fitting Ex: Find a polynomial of degree 1 to fit the following data Current 10 15 20 25 30 voltage 100 150 200 250 300 Sol: >>current=[10 15 20 25 30]; >>voltage=[100 150 200 250 300]; >>resistance=polyfit(current, voltage, 1) resistance= 10.0000 -0.0000 i.e. Voltage = 10x Current Polynomials Evaluation with matrix arguments Ex: Evaluate the matrix polynomial X2+X+2, given that the square matrix X= 2 3 4 5 Sol: >>A=[1 1 2]; >>X=[2 3; 4 5]; >>Z=polyvalm(A,X) Z= 20 24 32 44 %A= X2+X+2I %poly+val(evaluate)+m(matix)