Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Konsep Matriks Concept of Matrix Macam-macam Matriks Kompetensi Dasar : Mendeskripsikan macam-macam matriks Indikator : 1. Matriks ditentukan unsur dan notasinya 2. Matriks dibedakan menurut jenis dan relasinya Hal.: 3 Matriks Adaptif Kinds of Matrix Basic Competences : Describing the kinds of matrix Indicators : 1. Matrix is determined by its elements and notations 2. Matriks matrix is distinguished by its kinds and relations Hal.: 4 Matriks Adaptif Macam – macam Matriks Pengertian Matriks Matriks adalah susunan bilangan-bilangan yang terdiri atas barisbaris dan kolom-kolom. Masing-masing bilangan dalam matriks disebut entri atau elemen. Ordo (ukuran) matriks adalah jumlah baris kali jumlah kolom. Notasi: Matriks: A = [aij] Elemen: (A)ij = aij Ordo A: m x n Hal.: 5 A= a11 a21 : ai1 : am1 a12…….a1j ……a1n a22 ……a2j…….a2n : : : ai2 ……aij…….. ain : : : am2……amj……. amn baris kolom Matriks Adaptif Kinds of Matrix Definition of Matrix Matrix is the arrangement of numbers which consists of rows and columns. Each of the numbers in matrix is called as entry or element. Order (size) of matrix is the value of the row number multiplied by the number of column. Notation: Matrix: A = [aij] Element: (A)ij = aij Order A: m x n Hal.: 6 A= a11 a21 : ai1 : am1 a12…….a1j ……a1n a22 ……a2j…….a2n : : : ai2 ……aij…….. ain : : : am2……amj……. amn rows column Matriks Adaptif Macam-macam Matriks 1. Matriks Baris Matriks baris adalah matriks yang hanya terdiri dari satu baris. A12 Hal.: 7 2 5 B1x 3 1 -8 C1x 4 -2 0 25 14 8 Matriks Adaptif Kinds of Matrix 1. Row matrix Row matrix is a matrix which consists of one row. A12 Hal.: 8 2 5 B1x 3 1 -8 C1x 4 -2 0 25 14 8 Matriks Adaptif Macam-macam Matriks 2. Matriks Kolom Matriks Kolom adalah matriks yang hanya terdiri dari satu kolom P21 Q31 2 -7 9 2 1 Hal.: 9 Matriks Adaptif Kinds of Matrix 2. Column matrix Column matrix is a matrix which consists of one column. P21 Q31 2 -7 9 2 1 Hal.: 10 Matriks Adaptif Macam – macam Matriks 3. Matriks Persegi Matriks persegi (bujur sangkar) adalah matriks yang jumlah baris dan jumlah kolom sama. 1 2 4 2 2 2 3 3 3 Trace(A) = 1 + 2 + 3 diagonal utama Trace dari matriks adalah jumlahan elemen-elemen diagonal utama Hal.: 11 Matriks Adaptif Kinds of Matrix 3. Square matrix Square matrix is a matrix which has the same numbers of rows and columns. 1 2 4 2 2 2 3 3 3 Trace(A) = 1 + 2 + 3 Main diagonal Trace from matrix is the total numbers from the main diagonal elements. Hal.: 12 Matriks Adaptif Macam- macam Matriks 4. Matriks Nol Matriks nol adalah matriks yang semua elemennya nol 0 0 0 0 0 0 0 Matriks identitas adalah matriks persegi yang elemen diagonal I3 I4 utamanya 1I2dan elemen lainnya 0 Hal.: 13 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 Matriks Adaptif Kinds of Matrix 4. Zero matrix zero matrix is a matrix which all of its elements are zero. 0 0 0 0 0 0 0 Matrix identity is a square matrix which its main diagonal I4 3 element is I12 and the otherIelement is 0. Hal.: 14 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 Matriks Adaptif Macam-macam Matriks 5. Matriks ortogonal Matriks A orthogonal jika dan hanya jika AT = A –1 0 A= B= 1 0 1 -1 AT= 0 ½√2 -½√2 BT= ½√2 ½√2 -1 0 ½√2 ½√2 = A-1 = B-1 -½√2 ½√2 (A A-1-1)T = (A ATT)-1 Jika A adalah matriks orthogonal, maka (A-1)T = (AT)-1 Hal.: 15 Matriks Adaptif Kinds of Matrix 5. Orthogonal Matrix Matrix A is orthogonal if and only if AT = A –1 0 A= B= 1 0 1 -1 AT= 0 ½√2 -½√2 BT= ½√2 ½√2 -1 0 ½√2 ½√2 = A-1 = B-1 -½√2 ½√2 (A A-1-1)T = (A ATT)-1 If A is orthogonal matrix, so (A-1)T = (AT)-1 Hal.: 16 Matriks Adaptif Macam – macam Matriks A= 4 2 6 7 5 3 -9 7 AT = A’ = 4 5 2 3 6 -9 7 7 Definisi: Transpose matriks A adalah matriks AT, kolom-kolomnya adalah baris-baris dari A, baris-barisnya adalah kolom-kolom dari A. [AT]ij = [A]ji nxm Jika A adalah matriks m x n, maka matriks transpose AT berukuran ……….. Hal.: 17 Matriks Adaptif Kinds of Matrix A= 4 2 6 7 5 3 -9 7 AT = A’ = 4 5 2 3 6 -9 7 7 Definisi: Transpose matrix A is matrix AT, its columns are rows of A, its rows is columns of A. [AT]ij = [A]ji nxm if A is matrix m x n, so matrix transpose AT should be ……….. Hal.: 18 Matriks Adaptif Macam – macam Matriks Kesamaan dua matriks Dua matriks sama jika ukuran sama dan setiap entri yang bersesuaian sama. A= C= E= G= Hal.: 19 1 2 4 2 1 3 1 2 2 2 1 1 2 2 1 2 4 2 1 3 2 1 2 3 2 1 3 4 x 2 4 2 2 2 2 2 2 2 2 4 5 6 9 0 7 B= D= F= H= 2 ? 4 ? 9 ? 2 ? 5 ? 0 ? Matriks A=B C≠D E = F jika x = 1 2 ? 6 ? 7 ? G=H Adaptif Kind of Matrix Similarity of two matrixes Two matrix are similar if its size is similar and each symmetrical entry is similar A= C= E= G= Hal.: 20 1 2 4 2 1 3 1 2 2 2 1 1 2 2 1 2 4 2 1 3 2 1 2 3 2 1 3 4 x 2 4 2 2 2 2 2 2 2 2 4 5 6 9 0 7 B= D= F= H= 2 ? 4 ? 9 ? 2 ? 5 ? 0 ? Matriks A=B C≠D E = F jika x = 1 2 ? 6 ? 7 ? G=H Adaptif Macam-macam Matriks Matriks Simetri Matriks A disebut simetris jika dan hanya jika A = AT A= A = Hal.: 21 1 2 3 4 4 2 2 3 2 5 7 0 A’ = 3 7 8 2 4 0 2 9 4 2 2 3 A simetri = AT Matriks Adaptif Kinds of Matrix Symmetrical matrix Matrix A is called symmetric if and only if A = AT A= A = Hal.: 22 1 2 3 4 4 2 2 3 2 5 7 0 A’ = 3 7 8 2 4 0 2 9 4 2 2 3 A symmetric = AT Matriks Adaptif Macam-macam Matriks Sifat-sifat transpose matriks 1. Transpose dari A transpose adalah A: (AT )T = A A (AT)T = A AT Contoh: Hal.: 23 4 5 2 3 4 2 6 6 -9 5 3 -9 7 7 Matriks 4 5 7 2 3 7 6 -9 7 7 Adaptif Kinds of Matrix properties of transpose matrix (AT )T = A 1. Transpose of A transpose is A: A (AT)T = A AT Example: Hal.: 24 4 5 2 3 4 2 6 6 -9 5 3 -9 7 7 Matriks 4 5 7 2 3 7 6 -9 7 7 Adaptif Macam-macam Matriks 2. (A+B)T = AT + BT T T A+B T (A+B) Hal.: 25 = A T A = Matriks T + B + BT Adaptif Kinds of Matrix 2. (A+B)T = AT + BT T T A+B T (A+B) Hal.: 26 = A T A = Matriks T + B + BT Adaptif Macam-macam Matriks 3. (kA)T = k(A) T untuk skalar k T T kA T (kA) Hal.: 27 k = A T k(A) Matriks Adaptif Kinds of Matrix 3. (kA)T = k(A) T for scalar k T T kA T (kA) Hal.: 28 k = A T k(A) Matriks Adaptif Macam-macam Matriks 4. (AB)T = BT AT Hal.: 29 B AB = T (AB) = BTAT AB T T T Matriks A Adaptif Kinds of Matrix 4. (AB)T = BT AT Hal.: 30 B AB = T (AB) = BTAT AB T T T Matriks A Adaptif Macam-macam Matriks Soal : Isilah titik-titik di bawah ini 1. A simetri maka A + AT= …….. 2. ((AT)T)T = ……. 3. (ABC)T = ……. 4. ((k+a)A)T = …..... 5. (A + B + C)T = ………. Kunci: 1. 2A 2. AT 3. CTBTAT 4. (k+a)AT 5. AT + BT + CT Hal.: 31 Matriks Adaptif Kind of Matrix Quiz : Fill in the blanks bellow 1. A symmetric then A + AT= …….. 2. ((AT)T)T = ……. 3. (ABC)T = ……. 4. ((k+a)A)T = …..... 5. (A + B + C)T = ………. Answer keys: 1. 2A 2. AT 3. CTBTAT 4. (k+a)AT 5. AT + BT + CT Hal.: 32 Matriks Adaptif OPERASI MATRIKS Kompetesi Dasar Menyelesaikan Operasi Matriks Indikator 1. 2. Dua matriks atau lebih ditentukan hasil penjumlahan atau pengurangannya Dua matriks atau lebih ditentukan hasil kalinya Hal.: 33 Matriks Adaptif OPERATION OF MATRIX Basic competence Finishing operation matrix Indicator 1. 2. Two or more matrixes is defined by the result of their addition or subtraction Two or more matrixes is defined by the result of their multiplication Hal.: 34 Matriks Adaptif OPERASI MATRIKS Penjumlahan dan pengurangan dua matriks Contoh : A= A+B= A-B= Hal.: 35 10 22 1 -1 B= 10+2 22+6 1+7 -1+5 10-2 22-6 1-7 -1-5 2 6 7 5 = 12 28 8 4 8 16 -6 -6 = Matriks Adaptif OPERATION OF MATRIX Addition and subtraction of two matixes Example: A= A+B= A-B= Hal.: 36 10 22 1 -1 B= 10+2 22+6 1+7 -1+5 10-2 22-6 1-7 -1-5 2 6 7 5 = 12 28 8 4 8 16 -6 -6 = Matriks Adaptif OPERASI MATRIKS Apa syarat agar dua matriks dapat dijumlahkan? Jawab: Ordo dua matriks tersebut sama A = [aij] dan B = [bij] berukuran sama, A + B didefinisikan: (A + B)ij = (A)ij + (B)ij = aij + bij Hal.: 37 Matriks Adaptif OPERATION OF MATRIX What is the condition so that two matrixes can be added? Answer: The ordo of the two matrixes are the same A = [aij] dan B = [bij] have the same size, A + B is defined: (A + B)ij = (A)ij + (B)ij = aij + bij Hal.: 38 Matriks Adaptif OPERASI MATRIKS Jumlah dua matriks K= C= 1 3 5 5 7 C+D K+L = = 4 -9 7 0 9 -13 6 2 7 3 1 -2 4 -5 9 -4 3 L = 1 25 30 5 35 10 15 D = 3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? D+C = L+K = Apa kesimpulanmu? Apakah jumlahan matriks bersifat komutatif? Hal.: 39 Matriks Adaptif OPERATION OF MATRIX The quantity of two matrixes K= C= 1 3 5 5 7 C+D K+L = = 4 -9 7 0 9 -13 6 2 7 3 1 -2 4 -5 9 -4 3 L = 1 25 30 5 35 10 15 D = 3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? D+C = L+K = What is your conclusion? Is the addition of matrixes commutative? Hal.: 40 Matriks Adaptif OPERASI MATRIKS Soal: C= A = 3 -8 0 4 7 2 -1 8 4 0 0 0 0 0 0 D = 3 7 2 5 2 6 -1 8 4 0 0 0 0 0 0 B = E = Feedback: C +D = Hal.: 41 C + D =… C+E=… A+B=… Matriks 2 7 2 5 2 6 6 -1 2 9 9 8 -2 16 8 Adaptif OPERATION OF MATRIX Exercise: C= A = 3 -8 0 4 7 2 -1 8 4 0 0 0 0 0 0 D = 3 7 2 5 2 6 -1 8 4 0 0 0 0 0 0 B = E = Feedback: C +D = Hal.: 42 C + D =… C+E=… A+B=… Matriks 2 7 2 5 2 6 6 -1 2 9 9 8 -2 16 8 Adaptif OPERASI MATRIKS Hasil kali skalar dengan matriks A= 5 6 1 7 2 3 5x5 5A = 5x6 5x1 = 5x5 5x2 5x3 25 30 5 35 10 15 Apa hubungan H dengan A? H= 250 300 50 350 100 150 H = 50A Diberikan matriks A = [aij] dan skalar c, perkalian skalar cA mempunyai entri-entri sebagai berikut: (cA)ij = c.(A)ij = caij Catatan: Pada himpunan Mmxn, perkalian matriks dengan skalar bersifat tertutup (menghasilkan matriks dengan ordo yang sama) Hal.: 43 Matriks Adaptif OPERATION OF MATRIX The multiplication result of scalar matrix A= 5 6 1 7 2 3 5x5 5A = 5x6 5x1 = 5x5 5x2 5x3 25 30 5 35 10 15 What is the relation between H and A? H= 250 300 50 350 100 150 H = 50A Given matrix A = [aij] aand scalar c, the multiplication of scalar cA have the following entries: (cA)ij = c.(A)ij = caij Note: In the set of Mmxn, the matrix multiplication with scalar have closed properties (it will have matrix with the same orrdo) Hal.: 44 Matriks Adaptif OPERASI MATRIKS K 3x3 K= 4K = 5K = Hal.: 45 1 3 5 4 -9 7 0 9 -13 4 16 -36 12 28 0 20 36 -52 5 20 -45 15 35 0 25 45 -65 Matriks Adaptif OPERATION OF MATRIX K 3x3 K= 4K = 5K = Hal.: 46 1 3 5 4 -9 7 0 9 -13 4 16 -36 12 28 0 20 36 -52 5 20 -45 15 35 0 25 45 -65 Matriks Adaptif OPERASI MATRIKS Diketahui bahwa cA adalah matriks nol. Apa kesimpulan Anda tentang A dan c? Contoh: AA == cc == 70 cA = 0*2 7*0 7*0 0*7 7*0 0*2 0*5 7*0 7*0 0*2 7*0 0*6 = 0 2 0 7 0 2 0 5 0 2 0 6 0 0 0 0 0 0 kesimpulan Kasus 1: c = 0 dan A matriks sembarang. Kasus 2: A matriks nol dan c bisa berapa saja. Hal.: 47 Matriks Adaptif OPERATION OF MATRIX Known that cA is zero matrix. What is your conclusion about A and c? Example: AA == cc == 70 cA = 0*2 7*0 7*0 0*7 7*0 0*2 = 0*5 7*0 7*0 0*2 7*0 0*6 0 2 0 7 0 2 0 5 0 2 0 6 0 0 0 0 0 0 Conclusion Case 1: c = 0 and A is any matrix Case 2: A is zero matrix and c can be any number Hal.: 48 Matriks Adaptif OPERASI MATRIKS Perkalian matriks dengan matriks Definisi: Jika A = [aij] berukuran m x r , dan B = [bij] berukuran r x n, maka matriks hasil kalir A dan B, yaitu C = AB mempunyai elemenelemen yang didefinisikan sebagai berikut: (C)ij = (AB)ij = ∑ aikbkj = ai1b1j +ai2b2j+………airbrj k=1 • Syarat: A= Hal.: 49 A mxr B rxn 2 3 4 5 8 -7 9 -4 1 -5 7 -8 AB mxn B= Matriks 1 2 7 -6 4 -9 Tentukan AB dan BA Adaptif OPERATION OF MATRIX Multiplication between matrix Definition: If A = [aij] have size m x r , and B = [bij] have size r x n, then the matrix which is from the multiplication result between A and B, r yaitu is C = AB has elements that defined as follows: (C)ij = (AB)ij = ∑ aikbkj = ai1b1j +ai2b2j+………airbrj k=1 • Condition: A= Hal.: 50 A mxr B rxn 2 3 4 5 8 -7 9 -4 1 -5 7 -8 AB mxn B= Matriks 1 2 7 -6 4 -9 Define AB and BA Adaptif OPERASI MATRIKS Perkalian matriks dengan matriks Contoh : A= 2 3 4 5 8 -7 9 -4 1 -5 7 -8 B= 1 2 7 -6 4 -9 11 3 = 2.1 +3.7+4.4+5.11 AB = -35 -49 -35 -94 -55 94 -35 = -49 -35 -94 -55 BA tidak didefinisikan Hal.: 51 Matriks Adaptif OPERATION OF MATRIX The multiplication between matrixes Example: A= 2 3 4 5 8 -7 9 -4 1 -5 7 -8 B= 1 2 7 -6 4 -9 11 3 = 2.1 +3.7+4.4+5.11 AB = -35 -49 -35 -94 -55 94 -35 = -49 -35 -94 -55 BA is not define Hal.: 52 Matriks Adaptif OPERASI MATRIKS 1. Diberikan A dan B, AB dan BA terdefinisi. Apa kesimpulanmu? A B B A mxn nxk nxk mxn m=k ABmxm AB dan BA matriks persegi ABnxn 2. AB = O matriks nol, apakah salah satu dari A atau B pasti matriks nol? A= 2 2 3 3 B= 3 -3 -2 2 AB = 0 0 0 0 AB matriks nol, belum tentu A atau B matriks nol Hal.: 53 Matriks Adaptif OPERATION OF MATRIX 1. Given A and B, AB and BA is defined. What is your conclusion? A B B A mxn nxk nxk mxn m=k ABmxm AB and BA square matricx ABnxn 2. AB = O is zero matrix, is one of (A or B) is zero matrix? A= 2 2 3 3 B= 3 -3 -2 2 AB = 0 0 0 0 AB is zero matrix. Matrix A and B is not certain zero matrix Hal.: 54 Matriks Adaptif OPERASI MATRIKS Contoh 1: Tentukan hasil kalinya jika terdefinisi. A= C= • • • • • Hal.: 55 A B = ?? AC = ?? BD = ?? CD = ?? DB = ?? 2 4 2 3 7 3 4 9 5 7 -11 4 3 5 -6 5 0 6 B= D= Matriks 1 -9 8 5 1 2 0 2 0 0 6 8 9 5 6 5 6 -9 0 -4 7 8 9 Adaptif OPERATION OF MATRIX Example 1: Define the multiplication result if it defined: A= C= • • • • • Hal.: 56 A B = ?? AC = ?? BD = ?? CD = ?? DB = ?? 2 4 2 3 7 3 4 9 5 7 -11 4 3 5 -6 5 0 6 B= D= Matriks 1 -9 8 5 1 2 0 2 0 0 6 8 9 5 6 5 6 -9 0 -4 7 8 9 Adaptif OPERASI MATRIKS Contoh 2: A= 2 1 3 2 A2 = 2 1 3 2 2 1 3 2 2 1 3 2 2 1 3 2 A3 = A x A2 = 2 1 3 2 A0 = I An = A A A …A n faktor An+m = An Am Hal.: 57 Matriks Adaptif OPERATION OF MATRIX Example 2: A= 2 1 3 2 A2 = 2 1 3 2 2 1 3 2 2 1 3 2 2 1 3 2 A3 = A x A2 = 2 1 3 2 A0 = I An = A A A …A n factor An+m = An Am Hal.: 58 Matriks Adaptif DETERMINAN DAN INVERS Kompetensi Dasar: Menentukan determinan dan invers Indikator : 1. Matriks ditentukan determinannya 2. Matriks ditentukan inversnya Hal.: 59 Matriks Adaptif DETERMINANT AND INVERSE Basic Competence: Define the determinant and inverse Indicator : 1. Matrix is defined by its determinant 2. Matrix is defined by its inverse Hal.: 60 Matriks Adaptif DETERMINAN DAN INVERS Determinan Matriks ordo 2 x 2 Nilai determinan suatu matriks ordo 2 x 2 adalah hasil kali elemenelemen diagonal utama dikurangi hasil kali elemen pada diagonal kedua. Misalkan diketahui matriks A berordo 2 x 2, A = a b c d Determinan A adalah a b det A = c d Hal.: 61 = ad - bc Matriks Adaptif DETERMINANT AND INVERSE Determinant Matrix ordo 2 x 2 Determinant value of a matrix ordo 2 x 2 is the multiplication result of the main diagonal elements and subtract by the multiplication result of the second diagonal. For example, known matrix A ordo 2 x 2, A = a b c d Determinant A is a b det A = c d Hal.: 62 = ad - bc Matriks Adaptif DETERMINAN DAN INVERS Contoh: Invers matriks 2x2 A= A-1 Hal.: 63 3 2 4 1 1 3.1-4.2 = -4 3.1-4.2 15 = I 4 3 3.1-4.2 5 -2 3.1-4.2 Matriks 53 2 5 Adaptif DETERMINANT AND INVERSE Example: Matrix inverse 2x2 A= A-1 Hal.: 64 3 2 4 1 1 3.1-4.2 = -4 3.1-4.2 15 = I 4 3 3.1-4.2 5 -2 3.1-4.2 Matriks 53 2 5 Adaptif DETERMINANT DAN INVERSE Contoh : a b 1. Kapan matriks TIDAK mempunyai invers? c d 2. Tentukan invers matriks berikut ini a. b. c. d. Hal.: 65 5 1 1 2 0 1 0 2 0 0 4 1 1 0 0 1 a. 2/3 -1/5 -1/5 5/3 ad-bc = 0 b. tidak mempunyai invers c. tidak mempunyai invers d. Matriks 1 0 0 1 Adaptif DETERMINANT AND INVERSE Example : a b 1. When matrix Doesn’t have inverse? c d 2. Define the following matrix inverse a. b. c. d. Hal.: 66 5 1 1 2 0 1 0 2 0 0 4 1 1 0 0 1 a. ad-bc = 0 2/3 -1/5 -1/5 5/3 b. Doesn’t have inverse c. Doesn’t have inverse d. Matriks 1 0 0 1 Adaptif DETERMINAN DAN INVERS B adalah invers dari matriks A, jika AB = BA = I matriks identitas, ditulis B = A-1 A a Jika A = c A-1 b , maka d A-1 = A = I 1 d b A ad bc c a 1 dengan A ad bc 0 Hal.: 67 Matriks Adaptif DETERMINANT AND INVERSE B is inverse of matrix A, if AB = BA = I matrix identities, it is written B = A-1 A If A = a c A-1 b , then d A-1 = A = I 1 d b A ad bc c a 1 with A ad bc 0 Hal.: 68 Matriks Adaptif DETERMINAN DAN INVERS Contoh 1 : Tentukan invers dari matriks 2 A 7 danB 5 17 2 5 10 4 Jawab : A 17 5 1 d b 1 A c a 2.17 7 .5 7 2 17 5 7 2 det B = (-5) . (-4) – (-2) . (-10) = 20 – 20 = 0 , sehingga matriks B tidak memiliki invers Hal.: 69 Matriks Adaptif DETERMINANT AND INVERSE Example 1 : Defined the inverse of matrix 2 A 7 danB 5 17 2 5 10 4 Answer : A 17 5 1 d b 1 A c a 2.17 7 .5 7 2 17 5 7 2 det B = (-5) . (-4) – (-2) . (-10) = 20 – 20 = 0 , So, matrix B doesn’t have inverse Hal.: 70 Matriks Adaptif DETERMINAN DAN INVERS Contoh 2 : 4 2 1 4 2 danB 2 2 1 A 2 2 3 3 1 Diketahui matriks Tunjukkan bahwa A.A-1 = A-1.A = I dan B.B-1 = B-1. B = I 4 2 2 ½ -½ 2 -½ = 1 2 -½ 2 2 1 A-1 4 2 1 ½ -½ 1 2 2 1 -½ -½ 1 3 3 1 0 3 -2 Hal.: 71 4 A-1 A B ½ -½ B-1 = = A 2 1 ½ -½ 1 2 2 1 -½ -½ 1 3 3 1 0 3 -2 Matriks 0 0 1 I 4 B-1 1 B = 1 0 0 0 1 0 0 0 1 I Adaptif DETERMINANT AND INVERSE Example 2 : 4 2 1 4 2 danB 2 2 1 A 2 2 3 3 1 Known matrix Show that A.A-1 = A-1.A = I and B.B-1 = B-1. B = I 4 2 2 ½ -½ 2 -½ = 1 2 -½ 2 2 1 A-1 4 2 1 ½ -½ 1 2 2 1 -½ -½ 1 3 3 1 0 3 -2 Hal.: 72 4 A-1 A B ½ -½ B-1 = = A 2 1 ½ -½ 1 2 2 1 -½ -½ 1 3 3 1 0 3 -2 Matriks 0 0 1 I 4 B-1 1 B = 1 0 0 0 1 0 0 0 1 I Adaptif DETERMINAN DAN INVERS Matriks ordo 3 x 3 Determinan Matriks Ordo 3 x 3 a b MisalkanA d e g h c f . i Dengan aturan Sarrus, determinan A adalah sebagai berikut. a b c a Ad e f d _g _ h _ i+ g+ b e h + aei bfg cdh ceg afh bdi (aei bfg cdh) (ceg afh bdi) Hal.: 73 Matriks Adaptif DETERMINANT AND INVERSE Matrix ordo 3 x 3 Matrix Determinant Ordo 3 x 3 a b exampleA d e g h c f . i With Sarrus rule, determinant A is as follows a b c a Ad e f d _g _ h _ i+ g+ b e h + aei bfg cdh ceg afh bdi (aei bfg cdh) (ceg afh bdi) Hal.: 74 Matriks Adaptif DETERMINAN DAN INVERS Sistem Persamaan Linear Dua Variabel dengan Menggunakan Matriks a1x b1 y c1 Misal SPL a2 x b2 y c2 Persamaan tersebut dapat di ubah menjadi bentuk matriks berikut a1 b1 x c1 a2 b2 y c2 Hal.: 75 Matriks Adaptif DETERMINANT AND INVERSE The equation of linear with two variable using matrix a1x b1 y c1 For example SPL a2 x b2 y c2 The equation can be changed into the following matrix a1 b1 x c1 a2 b2 y c2 Hal.: 76 Matriks Adaptif DETERMINAN DAN INVERS Misalkan a1 b1 C1 x , P danB , maka dapat ditulis A y a2 b2 C2 a1 b1 x c1 a2 b2 y c2 Hal.: 77 AP B 1 PA B Matriks Adaptif DETERMINANT AND INVERSE a b C x ExampleA 1 1 , P andB 1 , Then can be write y a b C 2 2 2 as a1 b1 x c1 a2 b2 y c2 Hal.: 78 AP B 1 PA B Matriks Adaptif DETERMINAN DAN INVERS Contoh : Tentukan nilai x dan y yang memenuhi sistem persamaan linear 2 x 3 y 16 x 4 y 13 Jawab : Sistem persamaan 2 x 3 y 16 x 4 y 13 Jika dibuat dalam bentuk matriks menjadi 2 3 x 16 1 4 y 13 Hal.: 79 Matriks Adaptif DETERMINANT AND INVERSE Example: Define the value of x and y that fulfill the equation of linear system 2 x 3 y 16 x 4 y 13 answer : Equation system 2 x 3 y 16 x 4 y 13 If in matrix 2 3 x 16 1 4 y 13 Hal.: 80 Matriks Adaptif DETERMINAN DAN INVERS Perkalian matriks berbentuk AP = B dengan 2 3 x 16 , P danB A 1 4 y 13 4 3 1 4 3 1 A 2. 4 1.3 1 2 5 1 2 1 AP B P A1B x 1 4 3 16 y 5 1 2 13 1 64 39 1 25 5 5 16 26 5 10 2 Jadi nilai x = 5 dan y = 2 Hal.: 81 Matriks Adaptif DETERMINANT AND INVERSE The matrix multiplication in the form of AP = B with 2 3 x 16 , P danB A 1 4 y 13 4 3 1 4 3 1 A 2. 4 1.3 1 2 5 1 2 1 AP B P A1B x 1 4 3 16 y 5 1 2 13 1 64 39 1 25 5 5 16 26 5 10 2 So, the value of x = 5 and y = 2 Hal.: 82 Matriks Adaptif DETERMINAN DAN INVERS Penyelesaian sistem persamaan linear dua variabel dengan menggunakan determinan atau aturan Cramer. Misal SPL ax by c px qy r Maka dengan aturan Cramer, diperoleh c r x a p Hal.: 83 b q , dan b q a p y a p c r b q Matriks Adaptif DETERMINANT AND INVERSE The solution of linear equation system with two variables using determinant or Cramer rule For example SPL ax by c px qy r Then, with Cramer rule, we get c r x a p Hal.: 84 b q , dan b q a p y a p c r b q Matriks Adaptif DETERMINAN DAN INVERS Contoh : Gunakan aturan Cramer untuk menentukan himpunan penyelesaian sistem persamaan linear 3 x 4 y 5 2x y 4 Jawab : Dengan aturan Cramer diperoleh 5 4 4 1 (5).1 4.(4) 11 x 1 3 4 3.1 2.(4) 11 2 1 3 5 2 4 3.4 2.(5) 22 y 2 3 4 3.1 2.(4) 11 2 1 Jadi, himpunan penyelesaiannya adalah {(1,2)}. Hal.: 85 Matriks Adaptif DETERMINANT AND INVERSE Example : Use the Cramer rule to define the solution set of linear equation system 3 x 4 y 5 2x y 4 answer : With cramer Rule, we get 5 4 4 1 (5).1 4.(4) 11 x 1 3 4 3.1 2.(4) 11 2 1 3 5 2 4 3.4 2.(5) 22 y 2 3 4 3.1 2.(4) 11 2 1 So, the solution set is {(1,2)}. Hal.: 86 Matriks Adaptif DETERMINAN DAN INVERS Menyelesaikan Sistem Persamaan Linear Tiga Variabel dengan menggunakan Matriks SPL dalam bentuk: a11x1 + a12x2 + a13x3 +….. ..a1nxn = b1 a21x1 + a22x2 + a23x3 +…….a2nxn = b2 am1x1 + am2x2 + am3x3 + ……amnxn = bm Dapat disajikan dalam bentuk persamaan matriks: = a11 a12……...a1n x1 b1 a21 a22 ……..a2n x2 b2 : : : : : am1 am2…… amn xn bn x A: matriks koefisien b Ax = b Hal.: 87 Matriks Adaptif DETERMINANT AND INVERSE Finishing the equation of linear system with three variables using matrix SPL in the form of: a11x1 + a12x2 + a13x3 +….. ..a1nxn = b1 a21x1 + a22x2 + a23x3 +…….a2nxn = b2 am1x1 + am2x2 + am3x3 + ……amnxn = bm It can be written in the form of matrix equation: = a11 a12……...a1n x1 b1 a21 a22 ……..a2n x2 b2 : : : : : am1 am2…… amn xn bn x A: matrix coefficient b Ax = b Hal.: 88 Matriks Adaptif DETERMINAN DAN INVERS Contoh : SPL x1 + 2x2 + x3 = 6 -x2 + x3 = 1 4x1 + 2x2 + x3 = 4 Dapat disajikan dalam bentuk matriks sebagai berikut 1.x1 +2.x2 + 1.x3 0.x1 + -1.x2 + 1.x3 4.x1 +2.x2 + 1.x3 Hal.: 89 = 6 1 2 1 x1 1 0 -1 1 x2 4 4 2 1 x3 Matriks 6 = 1 4 Adaptif DETERMINANT AND INVERSE Example : SPL x1 + 2x2 + x3 = 6 -x2 + x3 = 1 4x1 + 2x2 + x3 = 4 It can be written in the form of the following matrix 1.x1 +2.x2 + 1.x3 0.x1 + -1.x2 + 1.x3 4.x1 +2.x2 + 1.x3 Hal.: 90 = 6 1 2 1 x1 1 0 -1 1 x2 4 4 2 1 x3 Matriks 6 = 1 4 Adaptif DETERMINAN DAN INVERS Perkalian dengan matriks identitas A= A.I = I.A = Hal.: 91 1 2 3 7 5 6 -9 3 -7 1 2 3 7 5 6 -9 3 1 1 0 0 0 1 0 -7 0 0 0 0 1 0 1 0 0 0 1 X X 1 2 3 7 5 6 1 -9 3 -7 2 3 1 2 3 7 5 6 7 5 6 -9 3 -7 -9 3 -7 Matriks = = Adaptif DETERMINANT AND INVERSE The multiplication of identity matrix A= A.I = I.A = Hal.: 92 1 2 3 7 5 6 -9 3 -7 1 2 3 7 5 6 -9 3 1 1 0 0 0 1 0 -7 0 0 0 0 1 0 1 0 0 0 1 X X 1 2 3 7 5 6 1 -9 3 -7 2 3 1 2 3 7 5 6 7 5 6 -9 3 -7 -9 3 -7 Matriks = = Adaptif DETERMINAN DAN INVERS AB = A dan BA = A, apa kesimpulanmu? 1 3 5 4 -9 7 0 9 -13 1 0 0 0 1 0 1 0 0 0 1 0 1 3 5 4 -9 7 0 9 -13 A 0 0 1 I = 0 0 1 I = = A 1 3 5 4 -9 7 0 9 -13 1 3 5 4 -9 7 0 9 -13 = A AB = A dan BA = A, maka B = I (I matriks identitas) Hal.: 93 Matriks Adaptif DETERMINANT AND INVERSE AB = A and BA = A, what is your conclusion? 1 3 5 4 -9 7 0 9 -13 1 0 0 0 1 0 1 0 0 0 1 0 1 3 5 4 -9 7 0 9 -13 A 0 0 1 I = 0 0 1 I = = A 1 3 5 4 -9 7 0 9 -13 1 3 5 4 -9 7 0 9 -13 = A AB = A and BA = A, then B = I (I identity matrix ) Hal.: 94 Matriks Adaptif DETERMINAN DAN INVERS 4 2 ½ -½ 2 2 -½ = 1 1 0 0 1 I A-1 A a b c d 1 0 0 1 A-1 = A-1 d ab-cd = -c ab-cd = a ab-cd -b ab-cd 1 d -b ad - bc -c a Jika ad –bc = 0 maka A TIDAK mempunyai invers. Hal.: 95 Matriks Adaptif DETERMINANT AND INVERSE 4 2 ½ -½ 2 2 -½ = 1 1 0 0 1 I A-1 A a b c d 1 0 0 1 A-1 = A-1 d ab-cd = -c ab-cd = a ab-cd -b ab-cd 1 d -b ad - bc -c a If ad –bc = 0 then A doesn’t have inverse Hal.: 96 Matriks Adaptif DETERMINAN DAN INVERS 1. Invers dari matriks jika ada adalah tunggal: Jika B = A-1 dan C = A-1, maka B = C (A-1)-1 2. (A-1)-1 = A A= A-1 = 4 2 2 2 ½ -½ -½ 1 ½ -½ = ? -½ 1 A-1 4 2 2 2 1 0 0 1 A Hal.: 97 Matriks Adaptif DETERMINANT AND INVERSE 1. If there is inverse of matrix is only one: If B = A-1 and C = A-1, then B = C (A-1)-1 2. (A-1)-1 = A A= A-1 = 4 2 2 2 ½ -½ -½ 1 ½ -½ = ? -½ 1 A-1 4 2 2 2 1 0 0 1 A Hal.: 98 Matriks Adaptif DETERMINAN DAN INVERS 3. Jika A mempunyai invers maka An mempunyai invers dan (An)-1 = (A-1)n, n = 0, 1, 2, 3,… A= A3 = (A3)-1 = ½ -½ 4 2 2 2 4 2 4 2 4 2 2 2 2 2 2 2 A-1 = -½ 0.625 -1 1 = 104 64 64 40 -1 1.625 sama (A-1)3 = Hal.: 99 ½ -½ ½ -½ ½ -½ -½ -½ -½ 1 1 Matriks 1 = 0.625 -1 -1 1.625 Adaptif DETERMINANT AND INVERSE 3. If A have inverse then An have inverse and (An)-1 = (A-1)n, n = 0, 1, 2, 3,… A= A3 = (A3)-1 = ½ -½ 4 2 2 2 4 2 4 2 4 2 2 2 2 2 2 2 A-1 = -½ 0.625 -1 1 = 104 64 64 40 -1 1.625 The same with Hal.: 100 (A-1)3 = ½ -½ ½ -½ ½ -½ -½ -½ -½ 1 1 Matriks 1 = 0.625 -1 -1 1.625 Adaptif DETERMINAN DAN INVERS 4. (AB)-1 = B-1 A-1 A= 4 2 2 2 (AB)-1 = B-1 A-1 = B= 16 24 10 14 ½ 2 2 -1 ½ -½ 1 B-1 = ½ 5/4 ½ -¾ -0.875 1.5 0.625 -1 = -¾ -½ Hal.: 101 5 5/4 ½ A-1 B-1 = 3 ½ -½ -½ 1 ½ 5/4 ½ -¾ Matriks = = -0.875 1.5 0.625 -1 -0.5 1 0.75 -1.375 Adaptif DETERMINANT AND INVERSE 4. (AB)-1 = B-1 A-1 A= 4 2 2 2 (AB)-1 = B-1 A-1 = B= 16 24 10 14 ½ 2 2 -1 ½ -½ 1 B-1 = ½ 5/4 ½ -¾ -0.875 1.5 0.625 -1 = -¾ -½ Hal.: 102 5 5/4 ½ A-1 B-1 = 3 ½ -½ -½ 1 ½ 5/4 ½ -¾ Matriks = = -0.875 1.5 0.625 -1 -0.5 1 0.75 -1.375 Adaptif