Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
11.3 Solving Equations That Are Quadratic in Form 1. Solve equations by rewriting them in quadratic form. 2. Solve equations that are quadratic in form by using substitution. 3. Solve application problems using equations that are quadratic in form. Solve: Fractions LCD Clear Fractions 1 10 1 2 y 5 y 25 5 Restrictions 1 10 1 y 5 y 5y 5 5 LCD: 5(y – 5)(y + 5) R: y ≠ 5, y ≠ -5 10 1 1 5y 5 y 5 5y 5 y 5 5y 5 y 5 5 y 5 y 5 y 5 5y 5 510 1y 5y 5 5y 25 50 1 y 2 25 5y 25 y 2 25 y 2 5y 50 0 y 10 y 5 0 y 10 y 5 10 Solve: Square Root Isolate Check solutions 3x 4 x 4 0 3 x 4 4 x 3 x 42 4 x 2 9 x 2 24 x 16 16 x 9 x 2 40x 16 0 9 x 4x 4 0 4 x 9 x 4 4 9 Check: x 4 9 4 4 3 4 4 0 9 9 4 2 12 4 0 3 3 3 4 8 12 0 3 3 3 Check: True x 4 34 4 4 4 0 12 42 4 0 12 8 4 0 False Solve: Fractions LCD Clear Fractions 4 8 9 m 1 m Restrictions 4 8 9 m 1 m LCD: m (m – 1) R: m ≠ 0, m ≠ 1 4 8 m m 1 9m m 1 m m 1 m 1 m 4m 9mm 1 8m 1 4m 9m2 9m 8m 8 9m2 5m 8m 8 9m2 3m 8 0 9m2 3m 8 0 a = 9, b = 3, c = -8 m 3 32 49 8 29 3 9 288 m 18 3 297 m 18 1 9*33 1 3 3 33 m 18 6 1 33 m 6 1 33 1 33 , 6 6 Solve: 1 5x 1 6x 5 6 1 2 0 x x 2 0 Fractions LCD Clear Fractions LCD: x2 Restrictions R: x ≠ 0 x 5 2 6 x 1 x x 2 x 2 0 x1 x 2 2 x 2 5x 6 0 x 2x 3 0 x 2 x 3 3, 2 Solve the equation. 8x 7 x 4 0 a) 9i b) 3i c) 3i d) 3 11.3 Copyright © 2011 Pearson Education, Inc. Slide 11- 8 Solve the equation. 8x 7 x 4 0 a) 9i b) 3i c) 3i d) 3 11.3 Copyright © 2011 Pearson Education, Inc. Slide 11- 9 Solve the equation. 8 8 3 x2 x2 a) 2, 6 b) c) 3 , 6 2 2 ,6 3 d) 2 , 6 3 11.3 Copyright © 2011 Pearson Education, Inc. Slide 11- 10 Solve the equation. 8 8 3 x2 x2 a) 2, 6 b) c) 3 , 6 2 2 ,6 3 d) 2 , 6 3 11.3 Copyright © 2011 Pearson Education, Inc. Slide 11- 11 Solve: x 32 2x 3 15 0 Repeated binomial Substitution Goal: x = Let u = (x – 3) 1st Substitution u 2 2u 15 0 Make a simpler problem u 5u 3 2nd Substitution Find the final solution. u 5 0 u 3 x–3= –5 x–3=3 x =–2 x=6 2, 6 Solve: x 2 Repeated binomial Substitution Goal: x = 2x 2 x 2x 3 Let u = (x2 – 2x) 1st Substitution u 2 2u 3 u 2 2u 3 0 1 2 ,1 2 ,1 i u 3u 1 0 2nd Substitution u 3 u 1 x 2 2 x 3 x2 2 x 1 x2 2 x 3 0 x2 2 x 1 0 2 2 2 ,1 i 2 2 2 2 413 x 21 2 8 x 2 2 2i 2 x 2 2 2 2 41 1 x 21 2 8 x 2 22 2 x 2 x 1 i 2 x 1 2 Solve: x 4 13 x 2 36 0 (x2)2 4 solutions First exponent is double the exponent of the middle term Let u = x2 u 2 13u 36 0 1st Substitution u 4u 9 0 u 4 u 9 2nd Substitution x2 4 x2 9 x2 4 x2 9 x 2 x 3 3, 2, 2, 3 Solve the equation. x 4 7 x 2 12 0 a) 2, 2 3 b) 2, 3 c) 2, 3 d) 2, 3 11.3 Copyright © 2011 Pearson Education, Inc. Slide 11- 15 Solve the equation. x 4 7 x 2 12 0 a) 2, 2 3 b) 2, 3 c) 2, 3 d) 2, 3 11.3 Copyright © 2011 Pearson Education, Inc. Slide 11- 16