Download 2.4 Other complex functions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
20
2.4
Other complex functions
Logarithm:
real values: f (x) = ex
f(x)
3
e
x
f(x)=x
2
1
ln x
0
-4
-3
-2
-1
0
1
2
3
x
4
-1
-2
-3
w = ex → x
=
⇒ f −1 (x) = ln x is the inverse function with respect to ex
ln w
ln 1 = 0
ln0 = −∞
ln e = 1
now complex:
w = ez
ea · eib ← 2π periodic in b
⇔ z = ln w = ln |w| + iϕ + 2πki, k ∈ Z
=
test:
ez = eln |w|+iϕ+2πki = eln |w| · ei(ϕ+2πk) = |w|eiϕ = w ⇒ o.k.
Definition 9
f (z) = ln |z| + iϕ + 2πki, k ∈ Z z = |z|eiϕ
is the complex logarithm of z. For k = 0 we get the main value.
Example:
ln(−1)
=
ln 1 +i ϕ +2πki = iπ + 2πki = iπ(2k + 1)
|{z}
|{z}
0
→
π
logarithm of negative numbers now defined
ln 0 still −∞
Exponential function with arbitrary base:
real numbers: ab = eb ln a
a>0
generalization for complex numbers: b ln a
b ∈ C, a ∈ C\{0} ⇒ ab = eb ln a = eb(ln |a|+iϕa +2πik)
Definition 10 00 = 1
special function:
f (z)
f (z)
=
=
az ,
a>0
(a = e-function)
z ln a
=e
=
zb, b ∈ R
e
ln a Re(z) i ln a Im(z)
e
o.k.
important (for root finding):
f (z)
→ f (z)
=
=
different cases: b ∈ Z
z = |z|eiϕ
b(ln |z|+iϕ+2πik)
e
b ln z
e
b(ln |z|+iϕ) 2πikb
→ e
=e
e
2πikb
;
k∈Z
= 1 → o.k. ”normal” power of z
b irrational → e2πikb infinite number of values
b rational → e2πikb =
ˆ finite number of values
2.4 Other complex functions
21
Example:
k
1
: e2πi n k = 0, . . . , n − 1
n
ϕ
1
k
= |z| n ei n e2πi n k = 0, . . . , n − 1
Im{z}1,5
b =
1
⇒ zn
1,0
0,5
0,0
-1,5
-1,0
-0,5
0,0
0,5
1,0
1,5
Re{z}
-0,5
-1,0
-1,5
in particular:
n=2 :
√
1+i
for k = 0
for k = 1
=
:
:
√
√
√
Im{z}
1
2
2 e
1
2
2 e
1
2
2 e
iπ
4
iπ
8
1
2
e
k
2πi n
e0 =
iπ
8 πi
e
√
, k = 0, 1
1
π
2 2 ei 8
√ 12 πi(1+ 1 ) √ 21 9 iπ
8
= 2 e
= 2 e8
1,0
Zi
0,5
0,0
0,0
-0,5
0,5
1,0
Re{z}
1+i
-0,5
⇒ Roots are difficult functions, in particular not single values.
The most simple case we know already from square roots of pure positive real numbers a. The solution is
√
2πik √
a
± a=e 2
which for k ∈ Z has the two independent solutions for k = 0 and k = 1.
Fundamental theorem of algebra
Each polynomial equation of degree n ∈ N
an z n + an−1 z n−1 + . . . + a1 z + a0 = 0
with a0 , . . . , an ∈ C has at least one solution z ∈ C.
⇒ Say this is z1 , then:
(z − z1 ) · bn−1 z n−1 + . . . + b0 = 0
k
⇒ each polynomial has exactly n solutions where so-called ”multiple zeros”, i.e. function (z − z0 ) count k-times.
n=1
n=2
n=3
n=4
n>4
a1 z + a0 = 0
a2 z 2 + a1 z + a0 = 0
a3 z 3 + a2 z 2 + a1 z + a0 = 0
a4 z 4 + . . . + a0 = 0
⇒
⇒
⇒
⇒
⇒
z = − aa10
quadratic equation
solution via Cardano formula
solution via formula possible
no formula exist for a general treatment!
Related documents