Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Review Lecture 5 • First-order circuit — The source-free R-C/R-L circuit — Step response of an RC/RL circuit v(t ) v() [v(t0 ) v()]e t t 0 The time constant = RC The final capacitor voltage v() The initial capacitor voltage v(t0) Voltage/current-division Lecture 7 AC Circuits Sinusoids and Phasors Contents • Sinusoids —Amplitude, angular/cyclic frequency, argument, periodic function • Phasors —Rectangular/polar/exponential form, Euler’s identity, and time-domain/phasor-domain representation • Phasor relationships for circuit elements — R, L, and C • Impedance and admittance — resistance and reactance,conductance and susceptance • Kirchhoff’s laws in the frequency domain • Impedance combinations Sinusoids • Periodic functions — f ( x nT ) f ( x) cos(x n2 ) cos(x) • Sinusoidal: sine or cosine function —Time-varying (t) and argument, x, of cos(x) —Amplitude Vm phase —Frequency: v(t ) Vm cos(t ) • angular (rad/s) and cyclic f (Hz): 2f argument —Period T (s): T 2 T 1f cos t nT cost nT cos(t ) T 2 —use cosine with positive amplitude V 0 sin(t ) cos(t ) 2 m cos(t ) cos(t ) Phase • Phase angle between two signals cos(x+/3) leads cos(x) by /3 cos(x-/3) lags — Same frequency: Amplitude may vary — Phase difference: • Express them in the same form – cosine and Vm > 0 v1 Vm1 cos(t 1 ) v2 Vm 2 cos(t 2 ) • Phase difference : 1 2 at any time t — out of/in phase — lead/lag 5cos(x+1) In phase : 1 2 0 cos(x +2) For a given , Vm and are important quantities. cos(x) by /3 Example: Calculate the phase angle between v1 = −10 cos(ωt + /3) and v2 = 12 sin(ωt + /6). State which sinusoid is leading. 2 (1) Same form: v1 10 cos(t 3 ) 10 cos(t 3 ) 10 cos(t 3 ) v2 12 sin(t (2) Compare: v1 10 cos(t 6 ) 10 cos(t 2 ) 10 cos(t ) 3 3 3 v1 lags v2 by /3 ) 10 cos(t ) 6 2 3 Phasors A phasor is a complex number that represents the amplitude (Vm) and phase () of a sinusoid. • Complex numbers - three representations — Rectangular: z x jy z r — Polar: j — Exponential: z re • Phasor representaion sinusoid v(t) — real part: v(t ) Vm cos t Rectangular Èxponential Vm cost j sin t Vm e j t Vm e e jt Re Vm cost j sin t Re Ve jt V Vm e j ejωt is implicitly present Sinor: rotating phasor Sinor: Vm e e jt on the complex plane • v(t) is the projection of the sinor on the real axis. A circle of radius Vm • The value of the sinor at time t = 0 is the phasor V of v(t). A complex number: magnitude and direction - vector Projection counterclockwise One circle, 2, Period T = time/circle = 2/ Phasor diagram • Diagram/complex number • Magnitude and phase V Vm e j ejωt is implicitly present Time domain and phasor(frequency) domain To represent signals v(t), i(t): • Time domain: v(t ) Vm cos(t ) —Time dependent —Always real • Phasor (freqency) V V e j m domain: —Time independent — Generally complex — is constant. —Circuit response depends on Example: Given i1(t) = 4 cos(ωt + /6) and i2(t) = 5 sin(ωt − /3), find their sum. i1 (t ) I 1 , i2 (t ) I 2 j I 1 4e , I 2 5e 6 i2 (t ) 5 cos(t I 2 5e j ... 3 ? cosine and Im > 0 i (t ) I m cos(t ) 5 ) 5 cos(t ) 3 2 6 5 6 I 1 I 2 4e 4(cos j j 6 5e j 5 6 5 5 j sin ) 5(cos j sin ) 6 6 6 6 Derivative and integral in phasor domain v(t ) Vm cos(t ) V Vm e j dv (t ) d cos(t ) Vm Vm sin(t ) dt dt Vm cos(t ) Vm cos(t ) 2 2 3 Vm cos(t 2 ) 2 Vm cos(t ) 2 Vm e j 2 Vm e j e j Example: Using the phasor approach, determine the current i(t) in a circuit described by the integrodifferential equation. 4i 8 idt 3 Frequency domain 2 j 8I 4I 3 jI 50e 3 j V cos j sin jV 2 2 dv(t ) dt jV v(t ) V j di 50 cos(2t ) dt 3 Useful in finding the steady-state solution: same frequency! =2 Phasor relationships for circuit elements i leads v by /2 v and i in phase v(t ) Vm cos(t ) i (t ) I m cos(t ) I m e j v(t ) RI m cos(t ) V RI m e j RI Ohm’ law holds v leads i by /2 I m e j i (t ) I m cos(t ) di (t ) v(t ) L LI m sin(t ) dt LI m cos(t ) 2 V jLI m e j jLI v has a phase +/2 i (t ) C dv (t ) CVm sin(t ) dt CVm cos(t ) 2 V Vm e j i has a phase +/2 I jCVm e j jCV V I jC Impedance and admittance opposition to the flow of sinusoidal current V RI V jLI V V ZI I jC Impedance Z V Phasor Voltage I Phaseor Current Admittance Complex quantity, but not a phasor Z 1 j C Y 1 I S Z V More about Impedance… 1 j , an open circuit C Inductor: Z jL 0, a short circuit Capacitor, Z 0 Capacitor, Z 1 j 0, a short circuit C Circuit response depends on the frequency! Inductor: Z jL , an open circuit Z is a complex quantity Rectangular form (x+jy) Reactance Z R jX Resistance 1 j) C X 0, inductive/lagging reactance... (Z jL) X 0, capacitive/leading reactance... (Z 1 Y G jB Z Conductance Current leads voltage Susceptance Note: G does not always equal to 1/R Kirchhoff’s laws in the frequency domain Both KVL and KCL hold in the frequency domain Time domain v1 v2 ... vn 0 vi (t ) Vmi cos(t i ) vi Re(Vmi e ji e jt ) Use the Re of a complex quantity to represent the signal Re(Vm1e j1 e jt ) Re(Vm 2e j2 e jt ) ... Re(Vmn e jn e jt ) 0 Re(Vm1e j1 e jt Vm 2e j2 e jt ... Vmn e jn e jt ) 0 Re (Vm1e j1 Vm 2e j2 ... Vmn e jn )e jt 0 Frequency domain Vm1e j1 Vm 2 e j2 ... Vmn e jn 0 KVL V1 V2 ... Vn 0 KCL I 1 I 2 ... I n 0 e jt 0 Impedance combinations Combination of Impedance is similar to resistance circuits. KVL V V1 V2 ... Vn V Z1I Z 2I ... Zn I Z1 Z 2 ... Zn I Z eq I Z eq Z1 Z 2 ... Z n Voltage/current division holds. Y- and -Y transformations as well Example: Impedance Find the input impedance of the circuit Assume that the circuit operates at ω = 50 rad/s. Z1 = Impedance of the 2-mF capacitor Z2 = Impedance of the 3- resistor in series with the 10-mF capacitor Z3 = Impedance of the 0.2-H inductor in series with the 8-resistor Z 1 j C Z jL Example: Solve the circuit Determine vo(t) in the circuit Step 1: Phasor-domain equivalent Z1 Step 2: Voltage-division Z2 Step 3: convert to time-domain Appendix: Mathematics • Complex numbers • Trigonometry z1 z 2 x1 x2 j y1 y2 sin A B sin A cos B cos A sin B z1 z 2 x1 x2 j y1 y2 cos A B cos A cos B sin A sin B z1 z 2 r1r2 e j 1 2 sin t sin t z1 r1 j 1 2 e z 2 r2 cost cos t sin t cos t 2 1 1 j e z r cos t sin t 2 A cos t B sin t C cost , where C A2 B 2 , tan 1 z re j 2 , z * x jy re j B A 1 j j e j cos j sin Lecture 8 AC Circuits Sinusoidal Steady-State Analysis