Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Radicals Radical Expressions Finding a root of a number is the inverse operation of raising a number to a power. This symbol is the radical or the radical sign radical sign index n a radicand The expression under the radical sign is the radicand. The index defines the root to be taken. Radicals Radical Expressions The above symbol represents the positive or principal root of a number. The symbol represents the negative root of a number. Radicals Square Roots A square root of any positive number has two roots – one is positive and the other is negative. If a is a positive number, then a is the positive square root of a and a is the negative square root of a. Examples: 100 10 5 25 7 49 36 6 0.81 0.9 4 x x 8 9 non-real # Radicals Rdicals Cube Roots 3 a A cube root of any positive number is positive. A cube root of any negative number is negative. Examples: 3 3 27 3 3 8 2 x x 3 4 x x 3 12 5 125 3 4 64 Radicals nth Roots An nth root of any number a is a number whose nth power is a. Examples: 3 81 4 81 3 2 16 4 16 2 5 32 2 4 4 2 5 32 Radicals nth Roots An nth root of any number a is a number whose nth power is a. Examples: 5 1 1 4 16 Non-real number 6 1 Non-real number 3 27 3 Rational Exponents m n n Definition of a : a m or a m n The value of the numerator represents the power of the radicand. The value of the denominator represents the index or root of the expression. Examples: 25 4 1 3 43 2 2 x 1 7 2 27 5 25 2 8 64 7 1 3 2 x 1 2 3 27 3 Rational Exponents m n n Definition of a : a m or a n m More Examples: 1 27 2 2 3 1 27 3 3 2 3 3 2 3 1 27 3 2 1 729 1 9 or 1 27 2 3 2 1 27 1 3 3 2 3 2 27 3 1 2 3 2 2 1 9 Rational Exponents Definition of a mn : 1 a m 1 or n n a or m 25 x 2 1 25 1 2 1 3 x 2 3 3 1 25 1 5 1 1 x 2 or x 3 a n Examples: 12 1 2 m Rational Exponents Use the properties of exponents to simplify each expression 4 x x x x 4 3 3 3 x 5 x 1 10 81x 12 5 2 x x 3 3 1 5 10 3x 2 4 5 3 3 2 x x x 2 1 3 12 x 1 x3 3 6 1 10 10 3x 4 9 x 5 10 x 1 2 2 x 1 8 12 12 x 9 12 x 3 4 Simplifying Rational Expressions Product Rule for Square Roots If a and b are real numbers, then a b a b Examples: 4 10 4 10 2 10 40 7 75 7 25 3 7 25 3 7 5 3 35 3 8 4 x x 16 x x 16x 17 3 16 16x 8 2 x x 2 x 17 3 15 2 5 3 2x 2 Simplifying Rational Expressions Quotient Rule for Square Roots If a and b are real numbers and b 0, then Examples: 16 4 16 81 81 9 45 49 45 49 2 25 95 3 5 7 7 2 2 5 25 a a b b Simplifying Rational Expressions If a and b are real numbers and b 0, then 15 3 35 3 5 3 3 90 2 9 10 2 a a b b 5 9 25 9 2 5 3 5 2 2 Simplifying Rational Expressions Examples: x 11 x x x5 x 10 18x 9 2x 3x 4 27 8 x 7 7y 25 4 27 x 8 93 x 7 y y 6 25 8 y 3 2 2 3 3 4 x 7y 5 Simplifying Rational Expressions Examples: 3 88 3 3 2 11 8 11 3 3 3 3 10 10 3 27 27 23 3mn n 27m n 3 m n n 3 7 3 3 10 3 81 81 3 8 8 3 3 3 6 27 3 2 33 3 2 Simplifying Rational Expressions One Big Final Example 5 5 64x y z 12 4 18 32 2x10 x 2 y 4 z15 z 3 2 3 5 2x z 2 4 3 2x y z Adding, Subtracting, Multiplying Radical Expressions Review and Examples: 5x 3x 8x 12 y 7 y 5y 6 11 9 11 15 11 7 3 7 2 7 Adding, Subtracting, Multiplying Radical Expressions Simplifying Radicals Prior to Adding or Subtracting 27 75 9 3 25 3 3 3 5 3 8 3 3 20 7 45 3 4 5 7 9 5 3 2 5 7 3 5 6 5 21 5 15 5 36 48 4 3 9 6 16 3 4 3 3 6 4 3 4 3 3 38 3 Adding, Subtracting, Multiplying Radical Expressions Simplifying Radicals Prior to Adding or Subtracting 9 x 36 x x 4 3 3 3x 6 x x x x 2 2 2 2 3 x 5x x 3x 6 x x x x 2 10 3 81 p 6 3 24 p 6 10 3 27 3 p 6 3 8 3 p 6 10 3 p 23 3 2p 23 3 28 p 30 p 23 3 23 3 2p 23 3 Adding, Subtracting, Multiplying Radical Expressions If a and b are real numbers, then a b a b 7 7 49 7 5 2 10 6 3 18 9 2 3 2 10 x 2 x 20x2 4 5x2 2x 5 Adding, Subtracting, Multiplying Radical Expressions 7 7 7 7 3 7 3 49 21 7 21 5x x 3 5 5x 3 25x x 5 3 5 x 2 x 5 15 x x 5 x 3 x2 3x 5x 15 x 2 3x 5x 15 Adding, Subtracting, Multiplying Radical Expressions 36 3 6 2 5x 4 9 6 3 6 3 36 3 36 33 5x 4 5x 4 25x 4 5x 4 5x 16 2 5 x 8 5 x 16