Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Sinusoids: continuous time
Amplitude A
Frequency F0 1 / T0 Hz
x(t ) A cos2 F0t A cos2 F0 (t t0 )
Phase 2F0t0 radians
delay
t0 sec
amplitude
A
period
T0 sec
Example of a Sinusoid
delay
period
amplitude
t0 3 9m sec
T0 10m sec
A 2 mVolts
mVolts
2
1
0
-1
-2
-3
0
20
40
60
80
100
msec
Then we can compute:
F0 1 / T0 100 Hz
2F0t0 2 100 9 103 1.8 rad
x(t ) 2 cos( 200t 1.8 )
Sampled Sinusoids
x[n] x(nTs )
x(t )
1
Fs
Ts
n
t
Ts sampling interval
x(t ) A cos2F0t
x[n] A cos 2
t nTs n
1
Fs
F0
Fs
n
Analog and Digital Frequencies
x[n] x(nTs )
x(t )
t
x(t ) A cos2F0t
F0
Analog Frequency
in Hz (1/sec)
1
Fs
Ts
n
x[n] A cos0 n
F0
0 2
Fs
Digital Frequency
in radians (no
dimensions)
Example
Given:
Analog Frequency:
F0 1.5kHz
Sampling Frequency: Fs 10kHz
compute:
Digital Frequency:
1.5 103
0 2
0.3 rad .
3
10 10
Complex Numbers
A complex number is defined as
Real Part
x a jb
Imaginary Part
where
j 1
It can be expressed as a vector in the Complex Plane:
Im
b Im{ x}
x
Re
a Re{x}
Complex Numbers: Magnitude and Phase
You can represent the same complex number in terms of
magnitude and phase:
x
b Im{ x}
a Re{x}
a | x | cos( )
b | x | sin( )
Then:
x | x | cos( ) j sin( )
Complex Numbers
Recall:
e j cos( ) j sin( )
where
Then:
j 1
j
x | x | e a jb
a Re{x} | x | cos
b Im{x} | x | sin
| x | magnitude{x} a 2 b 2
if a 0
arctan b / a
phase{x}
arctan b / a if a 0
Example
Let:
then
x 1 2 j
Re{ x} 1
Im{ x} 2
| x | 4 1 5
phase{x} arctan{ 2} 1.1071rad
x 1 2 j 5e j1.1071
Example
Let:
then
x 1 2 j
Re{ x} 1
Im{ x} 2
| x | 4 1 5
phase{x} arctan{ 2} 1.1071 2.0344rad
x 1 2 j 5e j 2.0344
Euler Formulas
Since:
e j cos( ) j sin( )
e j cos( ) j sin( ) cos( ) j sin( )
Then:
1 j
cos( ) e e j
2
1 j
sin( )
e e j
2j
Complex Exponentials
Using Euler’s Formulas we can express a sinusoidal
signal in terms of complex exponentials:
A j 2F0t j 2F0t
x(t ) A cos2F0t e
e
2
This can be written as:
A j j 2F0t A j j 2F0t
x(t ) A cos2F0t e e
e e
2
2
Complex Exponentials
Same for Discrete Time:
A j 0 n j 0 n
x[n] A cos0 n e
e
2
which can be written as:
A j j0 n A j j0 n
x[n] A cos0 n e e
e e
2
2
Why this is Important?
It is much easier to deal with complex exponentials than with sinusoids.
In fact:
d j 2F0t
e
j 2F0 e j 2F0t
dt
j 2F0t
j 2F0t
e
dt
1
/
j
2
F
e
0
e j 2F0 (t a ) e j 2F0 a e j 2F0t
differentiation, integration, time delay are just multiplications and
division, for complex exponentials only.