Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
#1 An exponent tells how many times a number is multiplied by itself. Base Exponent 3 8 Factored Form 8•8•8 = 512 Exponential Form 3•3•a•a•a 2 3 3 a x•y•x•2 2 1 2x y 2 2 4 9 3 3 2 3 copyright©amberpasillas2010 2 #2 When simplifying exponents you must watch the sign and the parenthesis! 2 5 = 2 (-5) 5•5 = 25 =(-5)(-5) = 2 –5 = 2 –5•5 = –25 25 –(5) = -1(5)(5) = –25 copyright©amberpasillas2010 Evaluate The Power #3 1) 2) 5 2 2 4 55 25 3) 2 2 2 2 4) 16 10 3 12 2 4 10 10 10 1000 12 12 144 To find 5 on my calculator I type in 5 ^ 4 = 625 5 yx 4 = 625 3 Try to find 9 = 729 copyright©amberpasillas2010 Powers of Ten #4 1 10 10 2 3 10 -1 10 100 -2 1,000 10 4 10 10,000 -3 5 10 10 100,000 10 copyright©amberpasillas2010 1 1 10 = 0.1 1 10 2 1 100 1 10 3 1 = 1000 = 0.01 0.001 Negative Exponents -n #5 For any integer n, a is the reciprocal of an EXAMPLES: a n 1 n a 3 A negative exponent is an inverse! copyright©amberpasillas2010 2 1 2 3 1 (5) 4 (5) 4 #6 Any number to the zero power is ALWAYS ONE. x0 = 1 Ex: 4 1 0 5 2 5 2 3 4 1 5 2 2 copyright©amberpasillas2010 0 1 5 1 0 #7 Exponents and Parenthesis Factored Form 8•x•x•x (8x)(8x)(8x) 4(xy)(xy) (5 x x x)(5 x x x) (2 y y z) (2 y y z) 8x Exponential Form 3 (8x) 3 4(xy) = 2 3 2 (5x ) = = 2 2 3 3 8 x 512x 2 2 4x y 5 2 3 2= (x ) 2 4 2 (2y z) = 2 y z copyright©amberpasillas2010 = 3 25x = 4y 6 4 2 z # 8 Fractions With Exponents 1 1 1 1) 3 8 222 2 2 4 2 2 2 2) 9 3 3 3 2 1 3 4) 3 1 2 2 9 2 25 2 5 5) 4 5 2 2 1 1 1 1 1 1 6) 9 3) 2 25 5 5 5 9 81 2 copyright©amberpasillas2010 #9 Negative Exponent Examples 1 1) n 5 n 5 3 4 2) a b 1 = 3 4 ab 1 3) m n 3 1 m 1 3 m 3 0 1 3 4) 3a 3 4 4 a a 4 1 1 5) 3a 4 4 3a 81a 4 1 6) 5x 5 2 x 5 2 x 2 copyright©amberpasillas2010 #10 Just flip the fraction over to make the exponent positive! 1 8 2 4 7 2 3 2 2 8 8 2 1 1 2 64 2 7 7 2 4 4 49 16 1 64 4 4 (1)3 4 1 1 3 3 copyright©amberpasillas2010 64 #11 When multiplying powers with the same base, just ADD the exponents. For all positive integers m and n: m a •a Ex : 2 n m+n = a 3 (3 )(3 ) = (3 • 3) • (3 • 3 •3) =3 5 2+3 4 =3 5 (x )(x ) = x 5+4 copyright©amberpasillas2010 =x 9 # 12 To find the power of a power, you MULTIPLY the exponents . This is used when an exponent is on the outside of parenthesis. 1 2 3 3 2•3 3 (5 a b) = 5 a 1 3 5 (2 x ) 1 8 2 6 3 b = 125a b 5 3•5 =2 x 15 = 32x 2 8•2 2 8(3 y z) = 8 (3 y 16 2 z ) = 72y z copyright©amberpasillas2010 #13 Product of a Power Property 8 x •x 5 =x 8+5 =x 13 Power of a Power Property 7 (4a b) 3 3 7•3 3 =4 a b = 64a21b3 Power of a Product Property 2 2 (-3 • 4) = (-12) = (-12)(-12) =144 copyright©amberpasillas2010 #14 Prime Factorization is when you write a number as the product of prime numbers. 36 Circle the prime numbers 2 Factor Tree 18 2 9 3 3 36 2 2 3 3 2 2 36 2 3 copyright©amberpasillas2010 #15 Factoring 12 2 2 23 6 2 3 2m 10m 2 5 m m m m 1) = = 3 5 m 3 15m 4 3 3 2 3a 27a b 3•3•3• a • a • a • b 2) = 2 = 2• 2•3•3• a • b • b 4b 36ab copyright©amberpasillas2010 # 16 When Dividing Powers with the same base, just SUBTRACT THE EXPONENTS. This is called the Quotient of Powers Property. x = x x x x x = x x x x3 2 xx x 5 or 5 x = x 5 2 x 3 2 x copyright©amberpasillas2010 #17 2 15x y 12xy 3 3 5 12 3 2 15x y 3 12xy 4 15 21 31 y x 12 5 y2 x 4 5xy 4 copyright©amberpasillas2010 2 # 18 COEFFICIENT: The number in front of the variable is the coefficient. Multiply coefficients. Add exponents if the bases are the same 2x 4x 3 5 2 1) (7ab)(2a ) 8 x 3 5 8x 8 2) (2x y )(3x y) 2 3 3 4 6 x y 14 a b 6 4 copyright©amberpasillas2010 # 19 Dividing Powers With Negatives Quotient of Powers Property a x = x a b b x 3 3 3 3 6x 3x 4 = 4 8x 4x 3x x = 4 3 4 3x = 4 3 7 3 3 4 6x 3x x x = = = 4 4 4 4 8x 4x copyright©amberpasillas2010 7 #20 2x 5x 3 2 5 x34 10x 7 Simplify. 1) (8a ) (3a ) 5 7 24 a 2 1 5 3 3) (9x y )(-2xy ) 18 x y 3 8 12 2) (-3a) (4a ) 7 1 12 a 4 2 1 3 1 5 4) (6a bc )(5ab ) 3 8 6 30 a b c copyright©amberpasillas2010 3 # 21 Quotient of Powers Property Quotient of Powers Property a x = x a b b x 2 7 723 75 1 5 3 7 7 2 7 7 3 Same 1 73 1 1 1 2 2 3 5 7 7 7 7 copyright©amberpasillas2010 Extras copyright©amberpasillas2010 Exponents & Powers #1 An exponent or power tells how many times a number is multiplied by itself. Base 5 2 7 3 4 3 Exponent “Five to the 2nd power” “Five squared” “Seven to the 3rd power” “Seven cubed” copyright©amberpasillas2010 55 777 # Multiplying Powers: If bases are the same add exponents. x x 7 x 4 7 4 x 11 Power of a Power: Used when exponents are on the outside of parenthesis, just multiply exponents. 2 4 3 (2a b ) 2 3 2 a b 3 4 3 8a b 6 12 Coefficients: The number in front of the variable is the coefficient. Multiply coefficients. 2x 4x 3 5 8x copyright©amberpasillas2010 8 # Dividing Powers: If bases are the same subtract exponents. 1512 6 15 6 12 6 6 3 Negative Exponent: To get rid of a negative exponent flip it over! 1 1 2 24 16 4 Zero Exponent: Anything to the zero power is always one! 329 0 1 copyright©amberpasillas2010