Download 2.4 Complex Numbers

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
2.4
Complex Numbers
Standard form of a complex number
a + bi
Adding and Subtracting complex numbers
(3 – i) + (2 + 3i) =
2i + (-4 – 2i) =
3 - (-2 + 3i) + (-5 + i) =
5 + 2i
-4
-2i
Multiplying Complex numbers
Note: i2 = -1
(i)(-3i) = -3i2 = 3
(2 – i)(4 + 3i) = 8 + 6i – 4i – 3i2 = 11 + 2i
(3 + 2i)(3 – 2i) = 9 – 4i2 = 9 + 4 = 13
-6
Dividing Complex numbers
2  3i
4  2i
(4  2i)
8  4i  12i  6i

2
4  2i 
16  4i
2
2  16i
1 4
2 16i



  i
20 20
20
10 5
Note:
a i a
3 12  3i 12i  36i 2  -6
48  27  4 3i  3 3i  3i
1
 
2


3   1  3i  1  3i 
-3
1  3i  3i  3i 
2
 2  2 3i
Use the quadratic formula to solve
0 = 3x2 – 2x + 5
x
  2 
 2
23
2
 435
2   56
2  2 14i
x

6
6
1
14
 
i
3
3

i1 = i
i2 = -1
i3 =
i   i  -i
2 1
i4 = (i2)2 = (-1)2 = 1
  i i
i5 = i
2 2
What does i36 = (i2)18 = (-1)18 = 1
i53 =
(i )  i 
2 26
i
Related documents