Download Further complex numbers

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Further complex numbers
Multiplication and division in polar
form
If s and t are complex numbers with s  p, arg s  
and t  q, arg t   , then
st  p (cos   i sin  )  q(cos   i sin  )
 pq(cos  cos   i sin  cos   i cos  sin   i 2 sin  sin  )
 pq   cos  cos   sin  sin    i  sin  cos   cos  sin   
 pq  cos(   )  i sin(   )  .
So st  p q and it may be true that arg( pq)  arg p  arg q.
Polar form
It is readily seen the x  r cos  and y  r sin  .
Hence, z  x  yi
 r cos    r sin   i
 r  cos   i sin   .
The non-zero complex number z can be written in modulus - argument form,
or polar form, as z  r  cos   i sin   , where r  z  0 is the modulus
and   arg z, with       , is the argument.
Examples
Write in modulus-argument form z  i, z  2, z  2  i and z  1  i.
z  i  r  1,  

2
z  2  r  2,   



 z  1 cos  i sin  .
2
2

 z  2  cos   i sin   .
z  2  i  r  5,   2.677  z  5  cos 2.677  i sin 2.677  .
z  1  i  r  2,   
3
4

 3
 z  2  cos  
 4


 3

i
sin



 4

 .

Multiplication and division in polar
form
If s and t are complex numbers with s  p, arg s  
and t  q, arg t   , then
st  p (cos   i sin  )  q(cos   i sin  )
 pq(cos  cos   i sin  cos   i cos  sin   i 2 sin  sin  )
 pq   cos  cos   sin  sin    i  sin  cos   cos  sin   
 pq  cos(   )  i sin(   )  .
So st  p q and it may be true that arg( pq)  arg p  arg q.
Multiplication and division in polar
form
The rules for multiplication and division
in modulus-argument from are
st  s t ,
arg( st )  arg( s)  arg(t )  k (2 ),
s
arg    arg s  arg t  k (2 ),
t
where in each case the number k ( 1, 0,1)
is chosen to ensure that the argument lies
in the interval       .
s
s
 ,
t
t
De Moivre’s Theorem
Note that
 cos   i sin  
2
  cos   i sin   cos   i sin  
 cos 2  i sin 2 .
De Moivre's Theorem:
n  , z  r  cos   i sin    z n  r n  cos n  i sin n  .
When n is not an integer, then r n  cos n  i sin n  is only
one of the possible values.
At A-Level, you are expected to be able to prove this statement
for positive integers. Use induction!
Examples
(i) Find the value of 1  i  .
10
(ii) Find the value of
1
 4  4i 
3
.
(iii) Find an expression for cos 6 and sin 6 .
Do Exercise 15A, p.334
Do Q1-Q15, pp.352-354
Some useful identities
If z  cos   i sin  then
and
so that
z n  cos n  i sin n
1
 cos n  i sin n
n
z
1
z  n  2 cos n
z
1
z n  n  2i sin n
z
n
As a special case, when n  1
we have
1
z
 2 cos 
z
1
z   2i sin 
z
Example : Show cos 4  
Show sin 6  
1
 cos 4  4 cos 2  3 .
8
1
10  15cos 2  6 cos 4  cos 6  .
32
Exponential form of a complex
number
ei
 i 
 1  i 
2!
2
 i 

3

3!
 
3 5
  i    
3! 5!
 
 2 4
 1   
2! 4!

 cos   i sin  .



So rei  r  cos  i sin  .
This is called the exponential form of a complex number.
De Moivre's Theorem now becomes
n  ,

rei

n
 r n e i n .
Note that ei   1  0
What is i i ?
Complex roots
z n  r  cos   i sin   has the n distinct roots

   2 k 
   2k  
z  n r  cos 

i
sin


 ,
n 
n 



where k  0,1, 2, n  1.
In exponential form:
z  re
n
i
has the n distinct roots
z  n re
i
Example 1 : Solve z 3  1.
  2 k
n
,
where k  0,1, 2,
n  1.
Example 2 : Solve z 4  1.
Solutions of complex equations
Solve the following:
Factorize the following:
16 z 4  ( z  1) 4
p( z )  z 4  1
z  4 3  4i  0
p( z )  z 5  1
( z  1)5  z 5
 2
Find the exact value of cos 
 5
3
Do Exercise 15B, pp.342-344

.

Useful identities in exponential form
If z  cos   i sin  then
and
so that
z n  cos n  i sin n
1
 cos n  i sin n
n
z
1
z  n  2 cos n
z
1
z n  n  2i sin n
z
n
As a special case, when n  1
we have
1
z
 2 cos 
z
1
z   2i sin 
z
ei n  ei n   2cos n
ei n  ei n   2i sin n
ei  e i  2 cos 
ei  e i   2i sin 
Summation of trigonometric series
2
sin
(10 )
k 1
Show that, provided cos   0,  (1) cos(2k  1) 
.
cos 
k 1
10
Show that
a1  a2 cos   a3 cos 3  a4 cos 4
1
,

  cos k 
40  32 cos 
k 0  2 
where a1 , a2 , a3 and a4 are to be determined.
3
k
Related documents