Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Complex Algebra Review
Dr. V. Këpuska
Complex Algebra Elements
Definitions:
j 1
R : Set of all Real Numbers
Ι : Set of all Imaginary Numbers
C : Set of all Complex Numbers
If x,y R then z x jy
C
Cartezian form
of a complex
number
Note: Real numbers can be thought of as complex numbers with imaginary
part equal to zero.
24 May 2017
Veton Këpuska
2
Complex Algebra Elements
If x 0 z jy I
If y 0 z x R
If z x jy then we define
x Rez Real part of z
y Imz Imaginary part of z
24 May 2017
Veton Këpuska
3
Euler’s Identity
e
j
cos j sin
j
j
e e
cos
j
e cos j sin
2
j
j
j
e e
e cos j sin
cos
2j
24 May 2017
Veton Këpuska
4
Polar Form of Complex Numbers
z re
j
r R
r 0
(- , ] radians
z r
Magnitude of z
arg z z
Angle (or argument) of z
Magnitude of a complex number z is a generalization of the absolute value
function/operator for real numbers. It is buy definition always non-negative.
24 May 2017
Veton Këpuska
5
Polar Form of Complex Numbers
Conversion between polar and
rectangular (Cartesian) forms.
z re j x jy
r cos jsin x jy
rcos jrsin x jy
r x2 y2
x rcos
1 y
y rsin tan
x
For z=0+j0; called “complex zero” one can not define
arg(0+j0). Why?
24 May 2017
Veton Këpuska
6
Geometric Representation of
Complex Numbers.
Im
z
Im{z}
Q2
Axis of
Imaginaries
Q1
Axis of
Reals
Re{z}
Q3
Re
Q4
Complex or
Gaussian plane
24 May 2017
Veton Këpuska
7
Geometric Representation of
Complex Numbers.
Condition 1
Q1 or Q2
Arg{z} ≥ 0
Q3 or Q4
Arg{z} ≤ 0
Q1 or Q4
Re{z} ≥ 0
Q2 or Q3
Re{z} ≤ 0
24 May 2017
Condition 2
Im{z} ≥ 0
Im
Q2
Im{z}
Complex
Number in
Quadrant
Im{z} ≤ 0
Axis of
Imaginarie
s z
Q1
Axis of
Reals
Re{z}
Q3
Re
Q4
Complex or
Gaussian plane
Veton Këpuska
8
Example
Im
z1
1
z2
-2
-1
z3
24 May 2017
Re
-1
z1 2
z1 1 j1 {
3
z1
4
z2 2
z 2 2 j 0 {
z 2
z3 2
z3 1 j1 {
3
z 3
4
Veton Këpuska
9
Conjugation of Complex Numbers
Definition: If z = x+jy ∈ C then z* = x-jy is called
the “Complex Conjugate” number of z.
Example: If z=ej (polar form) then what is z* also
in polar form?
z re j r cos jr sin
z r cos jr sin
r cos jr sin
sin sin
cos cos
r cos jr sin re j
If z=rej then z*=re-j
24 May 2017
Veton Këpuska
10
Geometric Representation of
Conjugate Numbers
If z=rej then z*=re-j
Im
z
y
x
Re
-
-y
Complex or
Gaussian plane
24 May 2017
Veton Këpuska
z*
11
Complex Number Operations
Extension of Operations for Real
Numbers
When adding/subtracting complex
numbers it is most convenient to use
Cartesian form.
When multiplying/dividing complex
numbers it is most convenient to use
Polar form.
24 May 2017
Veton Këpuska
12
Addition/Subtraction of Complex
Numbers
Let
z1 x1 jy1 , & z 2 x2 jy2
then
z1 z 2 x1 x2 j y1 y2
Thus :
Rez1 z 2 Rez1 Rez 2
Imz1 z 2 Imz1 Imz 2
24 May 2017
Veton Këpuska
13
Multiplication/Division of Complex
Numbers
Olso
Let
z1 r1e j1 r1 j1 j 2
e e
j 2
z 2 r2 e
r2
z1 r1e j1 & z 2 r2 e j 2
then
z1 z 2 r1e j1 r2 e j 2 r1r2 e j1 e j 2
z1 z 2 r1r2 e j 1 2
Therefore :
z1 r1 j 1 2
e
z 2 r2
Therefore :
z1 z 2 z1 z 2
z1
z1
z2
z2
z1 z 2 z1 z 2
24 May 2017
z1
z1 z 2
z2
Veton Këpuska
14
Useful Identities
z ∈ C, ∈ R & n ∈ Z (integer set)
1)
z z
3)
Re z Rez
5)
z1 z2 z1 z2
7)
z1 z2 z1 z2
8)
10)
zz z
Rez Rez
12)
z z
14)
zn z
n
n
n
16)
24 May 2017
2
z z
z z
2)
Im z Imz
z1
z1
z2
z2
4)
6)
z
z
Imz Imz
0 if 0
13) z z z
0
if
nz nz
15)
9)
11)
Veton Këpuska
15
Useful Identities
Example: z = +j0
=2 then arg(2)=0
=-2 then arg(-2)=
Im
j
z
-2
24 May 2017
-1
0
1
Veton Këpuska
2
Re
16
Silly Examples and Tricks
Im
e j 0 cos0 j sin 0 1 j 0 1
e
e
e
j
2
j
3
j
2
e j 2
cos j sin 0 j1 j
2
2
cos j sin 1 j 0 1
j
/2
-1 3/2 0
3
3
cos j sin 0 j 1 j
2
2
cos2 j sin 2 1 j 0 1
j 0 j j e
j
j 2 jj e 2 e
24 May 2017
j
2
j
2
e j 1
j0 1
j1 j
j 2 1
j3 j
Veton Këpuska
1
Re
-j
j4 1
j5 j
j 6 1
j7 j
j8 1
j9 j
j10 1
j11 j
j12 1
j13 j
j14 1
j15 j
17
Division Example
Division of two complex numbers in
rectangular form.
z1 x1 jy1 , z2 x1 jy1
z1 x1 jy1 x1 jy1 x2 jy2 x1 x2 y1 y2 j x2 y1 x1 y2
z2 x2 jy2 x2 jy2 x2 jy2
x 22 y 22
z 2
z2
z1 x1 x2 y1 y2 x2 y1 x1 y2
j 2 2
2
2
z2
x2 y2
x2 y2
z
Re 1
z2
24 May 2017
z
Im 1
z2
Veton Këpuska
18
Roots of Unity
Regard the equation:
zN-1=0, where z ∈ C & N ∈ Z+ (i.e. N>0)
The fundamental theorem of algebra
(Gauss) states that an Nth degree algebraic
equation has N roots (not necessarily
distinct).
st
3
z
1
z
1
(
1
root )
1
Example:
nd
3
3
(2 root )
N=3; z -1=0 z =1 ⇒ z 2 ?
rd
z ?
(
3
root
)
3
24 May 2017
Veton Këpuska
19
Roots of Unity
zN-1=0 has roots , k=0,1,..,N-1, where
k
e
k
e
The roots of
j
j
2
N
2k
N
, k 0,1,..., N 1
are called Nth roots of unity.
24 May 2017
Veton Këpuska
20
Roots of Unity
Verification:
2k
j
N
N
e
1 0 e j 2k 1 0
Applying Eulers Identity
e j 2k cos2k j sin 2k
cos2k j sin 2k 1 0
cos2k j sin 2k 1 j 0
cos2k 1
wich is true for k 0,1,..., N 1
sin 2k 0
24 May 2017
Veton Këpuska
21
Geometric Representation
N 3
e
2
2 1
j
3
j
2 2
3
1
e
e
2
j
3
j
4
3
k 0
Im
k 1
k 2
-1
J2
24 May 2017
Veton Këpuska
j1
J1
2/3
e
1
2 0
3
4/3
0 e
j
J0
0
1
Re
-j1
22
Important Observations
1.
Magnitude of each root are equal to 1. Thus, the Nth roots of
unity are located on the unit circle. (Unit circle is a circle on the
complex plane with radius of 1).
|e
2.
2k
N
| 1, k
The difference in angle between two consecutive roots is 2/N.
k 1 k
3.
j
k 1
1
e
k
j
2
N
2
N
Q.E.D
The roots, if complex, appear in complex-conjugate pairs. For
example for N=3, (J1)*=J2. In general the following property
holds: JN-k=(Jk)*
2 N k
2N
2k
2k
2k
2k *
j
j
j
j
j
j
*
N k e N e N e N e j 2 e N 1e N e N k
N k k
*
*
For N 3 & k 1 31 2 1 2 *
24 May 2017
Veton Këpuska
23