Download MTH55_Lec-17_sec_4-3a_Absolute_Value

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chabot Mathematics
§4.3a Absolute
Value
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Chabot College Mathematics
1
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Review § 4.2
MTH 55
 Any QUESTIONS About
• §4.2 → InEqualities & Problem-Solving
 Any QUESTIONS About HomeWork
• §4.2 → HW-12
Chabot College Mathematics
2
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Absolute Value
 The absolute value of x denoted |x|,
is defined as
x  0  x  x;
x  0  x   x.
 The absolute value of x represents the
distance from x to 0 on the number line
• e.g.; the solutions of |x| = 5 are 5 and −5.
5 units from zero
5 units from zero
x = –5 or x = 5
–5
Chabot College Mathematics
3
0
5
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Graph y = |x|
6
 Make T-table
x
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
Chabot College Mathematics
4
5
y = |x |
6
5
4
3
2
1
0
1
2
3
4
5
6
y
4
3
2
x
1
0
-6
-5
-4
-3
-2
-1
0
1
2
3
-1
-2
-3
-4
-5
file =XY_Plot_0211.xls
-6
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
4
5
6
Absolute Value Properties
1. |ab| = |a |· |b| for any real numbers a & b
•
The absolute value of a product is the
product of the absolute values
2. |a/b| = |a|/|b| for any real numbers a & b  0
•
The absolute value of a quotient is the
quotient of the absolute values
3. |−a| = |a| for any real number a
•
The absolute value of the opposite of a number is
the same as the absolute value of the number
Chabot College Mathematics
5
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Example  Absolute Value Calcs
 Simplify, leaving as little as possible
inside the absolute-value signs
8x
2
a. |7x|
b. |−8y| c. |6x | d.
2
4 x

SOLUTION
a. |7x| = 7  x
7 x
b. |−8y| = 8  y  8 y
2
2
2
2

6x
c. |6x | = 6  x  6 x
2
2
8x
2
d. .


 
2
x
x
4 x
x
Chabot College Mathematics
6
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Distance & Absolute-Value
 For any real numbers a and b, the
distance between them is |a – b|
 Example  Find the distance between
−12 and −56 on the number line
 SOLUTION
• |−12 − (−56)| = |+44| = 44
• Or
• |−56 − (−12)| = |−44| = 44
Chabot College Mathematics
7
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Example  AbsVal Expressions
 Find the Solution-Sets for
a) |x| = 6
b) |x| = 0
c) |x| = −2
 SOLUTION a) |x| = 6
 We interpret |x| = 6 to mean that the
number x is 6 units from zero on a
number line.
 Thus the solution set is {−6, 6}
Chabot College Mathematics
8
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Example  AbsVal Expressions
 Find the Solution-Sets for
a) |x| = 6
b) |x| = 0
c) |x| = –2
 SOLUTION b) |x| = 0
 We interpret |x| = 0 to mean that x is 0
units from zero on a number line. The
only number that satisfies this criteria is
zero itself.
 Thus the solution set is {0}
Chabot College Mathematics
9
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Example  AbsVal Expressions
 Find the Solution-Sets for
a) |x| = 6
b) |x| = 0
c) |x| = −2
 SOLUTION c) |x| = −2
 Since distance is always NonNegative,
|x| = −2 has NO solution.
 Thus the solution set is Ø
Chabot College Mathematics
10
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Absolute Value Principle
 For any positive number p and
any algebraic expression X:
a. The solutions of |X| = p are those
numbers that satisfy X = −p or X = p
b. The equation |X| = 0 is equivalent to
the equation X = 0
c. The equation |X| = −p has no solution.
Chabot College Mathematics
11
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Example  AbsVal Principle
 Solve: a) |2x+1| = 5; b) |3 − 4x| = −10
 SOLUTION a) |2x + 1| = 5
• use the absolute-value principle, replacing
X with 2x + 1 and p with 5. Then we solve
each equation separately
|X| = p
|2x +1| = 5
2x +1 = −5 or 2x +1 = 5
2x = −6 or
2x = 4
x = −3 or
x=2
Chabot College Mathematics
12
Absolute-value principle
 Thus The solution
set is {−3, 2}.
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Example  AbsVal Principle
 Solve: a) |2x+1| = 5; b) |3 − 4x| = −10
 SOLUTION b) |3 − 4x| = −10
• The absolute-value principle reminds us
that absolute value is always nonnegative.
• So the equation |3 − 4x| = −10 has
NO solution.
• Thus The solution set is Ø
Chabot College Mathematics
13
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Example  AbsVal Principle
 Solve |2x + 3| = 5
 SOLUTION
• For |2x + 3| to equal 5, 2x + 3 must be 5
units from 0 on the no. line. This can happen
only when 2x + 3 = 5 or 2x + 3 = −5.
2x + 3 = 5
or
2x + 3 = –5
• Solve
2x = 2
or
2x = –8
Equation
x=1
or
x = –4
Set
• Graphing the Solutions
–5
–4
Chabot College Mathematics
14
–3
–2
–1
0
1
2
3
4
5
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Solving 1-AbsVal Equations

To solve an equation containing a
single absolute value
1. Isolate the absolute value so that the
equation is in the form |ax + b| = c.
If c > 0, proceed to steps 2 and 3.
If c < 0, the equation has no solution.
2. Separate the absolute value into two
equations, ax + b = c and ax + b = −c.
3. Solve both equations for x
Chabot College Mathematics
15
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Two AbsVal Expression Eqns
 Sometimes an equation has TWO
absolute-value expressions.
 Consider |a| = |b|. This means that a
and b are the same distance from zero.
 If a and b are the same distance from
zero, then either they are the same
number or they are opposites.
Chabot College Mathematics
16
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Example  2 AbsVal Expressions
 Solve: |3x – 5| = |8 + 4x|.
 SOLUTION
• Recall that if |a| = |b| then either they are
the same or they are opposites
This assumes these
numbers are the same
3x – 5 = 8 + 4x

OR
3x – 5 = –(8 + 4x)
Need to solve Both Eqns for x
Chabot College Mathematics
17
This assumes these
numbers are opposites.
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Example  2 AbsVal Expressions
1. 3x – 5 = 8 + 4x 
–13 + 3x = 4x
–13 = x

2. 3x – 5 = –(8 + 4x)
3x  5  8  4 x
7 x  5  8
7 x  3
3
x
7
Chabot College Mathematics
18
Thus For Eqn
|3x – 5| = |8 + 4x|
The solutions are
•
−13
•
−3/7
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Solve Eqns of Form |ax+b| = |cx+d|
 To solve an equation in the form
|ax + b| = |cx + d|
1. Separate the absolute value
equation into two equations ax + b
= cx + d, and ax + b = −(cx + d).
2. Solve both equations.
Chabot College Mathematics
19
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Inequalities &AbsVal Expressions
 Example  Solve: |x| < 3 Then graph
 SOLUTION
• The solutions of |x| < 3 are all numbers whose
distance from zero is less than 3. By
substituting we find that numbers such as
−2, −1, −1/2, 0, 1/3, 1, and 2 are all solutions.
• The solution set is {x| −3 < x < 3}. In interval
notation, the solution set is (−3, 3). The graph:
(
-3
Chabot College Mathematics
20
)
3
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Inequalities & AbsVal Expressions
 Example  Solve |x| ≥ 3 Then Graph
 SOLUTION
• The solutions of |x| ≥ 3 are all numbers whose
distance from zero is at least 3 units. The
solution set is {x| x ≤ −3 or x ≥ 3}
• In interval notation, the solution set is
(−, −3] U [3, )
• The Solution
Graph
Chabot College Mathematics
21
]
−3
[
3
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Basic Absolute Value Eqns
Absolute Value
Equivalent
Solution
Equation
x  k k  0 
State
x  k or x  k
Set
-k,k
x 0
x  k k  0
x0
•
x 7
x  7 or x  7
x 0
x0
Chabot College Mathematics
22

Examples 
x  13
0
-7 ,7
0

Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Example  Catering Costs
 Johnson Catering charges $100 plus
$30 per hour to cater an event.
Catherine’s Catering charges a straight
$50 per hour rate. For what lengths of
time does it cost less to hire
Catherine’s Catering?
 Familiarize → LET
• x ≡ the Catering time in hours
• TotalCost = (OneTime Charge) plus
(Hourly Rate)·(Catering Time)
Chabot College Mathematics
23
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Example  Catering Costs
 Translate
Cathrine's
Cost
50 x
 Carry
Out
Chabot College Mathematics
24
Is Less
Than

Johnson's
Cost
30 x  100
50 x  100  30 x
20 x  100
x5
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Example  Catering Costs
 Check
50  5  30  5  100
?
?
250 150  100
250  250 
 STATE
 For values of x < 5 hr, Catherine’s
Catering will cost less than Johnson’s
Chabot College Mathematics
25
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
WhiteBoard Work
 Problems From §4.3 Exercise Set
• 8, 24, 34, 38, 40, 48
y

Graph of
Absolute
Value
Function
Chabot College Mathematics
26
x
0
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
All Done for Today
Cool
Catering
Chabot College Mathematics
27
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Chabot Mathematics
Appendix
r  s  r  s r  s 
2
2
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
–
Chabot College Mathematics
28
Bruce Mayer, PE
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt
Related documents