Download Complex Numbers

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Lesson 6.5
Trigonometric Form of Complex
Numbers
Complex Numbers
Recall complex numbers can be written in the form:
z  a  bi
Also, they are graphed on the “real – imaginary” plane:
z  3 2i
Imaginary Axis
Absolute Value of a Complex
Distance from (0,0) to (a, b)
Real
Axis
a  bi  a 2  b2
Trigonometric Form
Remember changing vector components using
trig:
xv , yv  v cos  v , v sin  v
We can do the same with complex numbers
(where r represents the magnitude)
a  bi  r cos  r sin  i
Where r is the distance (absolute
value), so…
r  a 2  b2
Example
Write the complex number in trigonometric form.
z  1 3i
Example
Write the standard form (a + bi) of the complex number

z  5 cos135  i sin 135
o
o

Problem Set 6.5.1
Product & Quotient of Complex Numbers
Start with 2 complex numbers:
z1  r1 cos1  r1 sin 1 i 
z2  r2 cos2  r2 sin 2 i 
Then the product is:
r = magnitude
z1 z2  r1r2 cos1  2   r1r2 sin 1  2 i 
And the quotient is:
We could factor out
these coefficients

z1  r1
r1
  cos1   2   sin 1   2 i 
z2  r2
r2

Example
Find the product of the complex numbers.
2
2 

z1  2 cos
 i sin

3
3 

11
11 

z2  8 cos
 i sin

6
6 

Try It:
Take a complex number
Multiply it by itself
3(cos   i sin  )
3(cos   i sin  )  3(cos   i sin  )
Square it
Now, multiply this product by the original
Cube it
See a pattern?
9cos 2  i sin 2   3(cos   i sin  )
De Moivre’s Theorem
For a complex number where n is a positive integer:
z  r cos   i sin  
n
n
 r n cos n  i sin n 
Remember where the n ‘s go
Example
Use De Moivre’s to find:

2 3 i

5
Problem Set 6.5.2
Related documents