Download MTH55_Lec-38_sec_7-1b_Cube_nth_Roots

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chabot Mathematics
§7.1 Cube
th
& n Roots
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Chabot College Mathematics
1
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
Review § 7.1
MTH 55
 Any QUESTIONS About
• §7.1 → Square-Roots and Radical
Expessions
 Any QUESTIONS About HomeWork
• §7.1 → HW-30
Chabot College Mathematics
2
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
Cube Root
 The CUBE root, c, of a
Number a is written as:
3 a,
 The number c is the cube root of a,
if the third power of c is a; that is;
if c3 = a, then
3 a  c.
Chabot College Mathematics
3
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
Example  Cube Root of No.s
 Find Cube Roots
a) 3 0.008
b)3
27
c)
3
 2197
64
 SOLUTION
• a)
b. 3 0.008  0.2
• b)
3
 2197  13 As (−13)(−13)(−13) = −2197
27
3
c. 3

• c)
64 4
Chabot College Mathematics
4
As 0.2·0.2·0.2 = 0.008
As 33 = 27 and 43 = 64,
so (3/4)3 = 27/64
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
Cube Root Functions
 Since EVERY Real Number has a Cube
Root Define the Cube Root Function:
f x   x
5
3
4
2
1
• Domain =
{all Real numbers}
x
0
-10
-8
-6
-4
-2
0
2
4
6
-1
-2
• Range =
{all Real numbers}
-3
-4
M55_§JBerland_Graphs_0806.xls
5
y  f x   3 x
3
 The Graph
Reveals
Chabot College Mathematics
y
-5
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
8
10
Evaluate Cube Root Functions

Evaluate Cube Root Functions
a) u y   3  2 y  19 u73
b) vz   3 7 z  37 v17 

SOLUTION (using calculator)
a) u 73  3  273  19  3  146  19
 3  127  5.025
3 717   37  3 119  37


v
17

b)
 3 82  4.344
Chabot College Mathematics
6
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
Simplify Cube Roots
 For any
Real Number, a
3
a a
3
 Use this property to simplify Cube Root
Expressions.
 For EXAMPLE  Simplify 3 27 x3 .
 SOLUTION
3
3
a. 27 x  3 x
Chabot College Mathematics
7
because (–3x)(–3x)(–3x) = –27x3
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
nth Roots
 nth root: The number c is an nth root of
a number a if cn = a.
 The fourth root of a number a is the
number c for which c4 = a. We write n a
for the nth root. The number n is called
the index (plural, indices). When the
index is 2 (for a Square Root), the Index
is ommitted.
Chabot College Mathematics
8
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
Odd & Even nth Roots →
n
a
 When the index number, n, is ODD the
root itself is also called ODD
• A Cube-Root (n = 3) is Odd. Other Odd
roots share the properties of Cube-Roots
– the most important property of ODD roots is
that we can take the ODD-Root of any Real
Number – positive or NEGATIVE
– Domain of Odd Roots = (−, +)
– Range of Odd Roots =(−, +)
Chabot College Mathematics
9
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
Example  nth Roots of No.s
 Find ODD Roots
a)
5
243
b)
5
 243 c)
11
11
m
 SOLUTION
• a)
5
243  3
Since 35 = 243
• b)
5
 243  3
As (−3)(−3)(−3)(−3)(−3) = −243
m m
When the index equals the
exponent under the radical
we recover the Base
• c)
11
Chabot College Mathematics
10
11
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
Odd & Even nth Roots →
n
a
 When the index number, n, is EVEN the
root itself is also called EVEN
• A Sq-Root (n = 2) is Even. Other Even
roots share the properties of Sq-Roots
– The most important property of EVEN roots is
that we canNOT take the EVEN-Root of a
NEGATIVE number.
– Domain of Even Roots = {x|x ≥ 0}
– Range of Even Roots = {y|y ≥ 0}
Chabot College Mathematics
11
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
Example  nth Roots of No.s
 Find EVEN Roots
a)
4
b)
81
4
 81
c)4
16m
4
 SOLUTION
• a)
4
81  3
Since 34 = 81
• b)
4
 81  
Even Root is Not a Real No.
• c)
4
16m  2 m
Chabot College Mathematics
12
4
Use absolute-value notation
since m could represent a
negative number
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
Simplifying nth Roots
n
a
n
a
n
n
a
a
Positive
Positive
Negative
|a|
Positive
Not a real
number
Positive
Negative
Negative
a
Even
a
Odd
Chabot College Mathematics
13
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
Example  Radical Expressions
 Find nth Roots
a) 4 u 2  7 4
b) 5 3v  115 c) 6  136
 SOLUTION
• a)
4
u  7
• b)
5
3v 11
• c)
6
 13
6
n
a n  a if n is EVEN
 3v  11 as
n
a n  a if n is ODD
  13  13 as
n
a n  a if n is EVEN
5
Chabot College Mathematics
14
 u  7 as
4
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
WhiteBoard Work
 Problems From §7.1 Exercise Set
• 50, 74, 84, 88, 98, 102

Principal
nth Root
Chabot College Mathematics
15
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
All Done for Today
SkidMark
Analysis
Skid Distances
Chabot College Mathematics
16
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
Chabot Mathematics
Appendix
r  s  r  s r  s 
2
2
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
–
Chabot College Mathematics
17
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
Graph y = |x|
6
 Make T-table
x
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
Chabot College Mathematics
18
5
y = |x |
6
5
4
3
2
1
0
1
2
3
4
5
6
y
4
3
2
1
x
0
-6
-5
-4
-3
-2
-1
0
1
2
3
-1
-2
-3
-4
-5
file =XY_Plot_0211.xls
-6
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
4
5
6
y
4
y
2
x
0
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
2
-2
-4
-6
x
-8
-10
-12
-14
M55_§JBerland_Graphs_0806.xls
Chabot College Mathematics
19
-16
Bruce Mayer, PE
[email protected] • MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt
Related documents