Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Alice in Diceland BIKAS K SINHA Faculty [1979-2011] INDIAN STATISTICAL INSTITUTE KOLKATA & Ex-Member [2006-2009] National Statistical Commission GoI Alice in Diceland….. • Fun & Game Unbounded.. • As soon as Alice Landed – • In a Mysterious Diceland ! • Magician started The Show For all….HIGH & Low……. • ĎĬČĘ Ĝãɱëš……..All fun… • & So Much to Learn…. AND so many challenges… With the Games of Chance !!! [Bikas K. Sinha, ISI, Kolkata] Warm-up Game….. “Racing Post” : LA-based News Paper “To Switch or Not to Switch” ? BT10 Ace 2 BT10 3 4 BT10 5 6 FAIR 6-faced DICE Cash Reward against Cash Entry-Fee ENTRY FEE : BT . 10 /IS THIS A FAIR GAME ? Gambling : Fair or Unfair ? Warm Up Game…FAIR ? BT10 Ace BT10 2 3 4 BT10 5 6 Would you continue to play ? Changed Scenario…. BT10 BT10 BT10 Ace 5 6 2 3 4 ----- • What about now ? Changed Scenario…FAIR ? BT10 2 BT10 BT10 3 4 5 6 What about now ? Changed Scenario ? BT10 BT10 2 3 4 BT10 5 Warm Up Game….FAIR ? BT* Ace 2 BT* 3 4 BT* 5 6 Possible Scenario : All the Money [Rs. 30] in exactly one box…..other two are empty ! Rs. 30 ---Rs. 30 ---Rs. 30 To Switch OR Not To Switch the Choice ? Dice Game I [Hungarian Brothers’ Puzzle] Four Hungarian Brothers Honest BUT Very Special !!! [Indian Adaptation : Names Changed !] • Bore Bhaia : 4 4 4 4 0 0 • Du-Numbari : 3 3 3 3 3 3 • Tisree Kasam : 2 2 2 2 6 6 • Chhote Golam: 5 5 5 1 1 1 Non-Transtitive Dominance !!! Dice Game I • No Entry Fee ! • You Choose “One Dice” & I do next. • We BOTH Throw our Chosen Dice to check WHO got a Larger Number on the Upper-most Face of the Dice….Winner must show a Larger Number and will receive BT 100.00 from the Opponent. • Is it a FAIR Game ? Sample Space… • • • • • • • 1 1 2 3 4 5 6 2 3 4 5 6 36 pairs of outcomes of the type (i, j) 1 <= i, j <= 6 Choice & Chance !!! • Opponent : II III IV I • Self : I II III ? Computations : P[ I dominates II ] = 67 % P[ II dominates III ] = 67 % P[ III dominates IV ] = 67 % Conclusion : ‘I’ BEST & ‘IV’ Worst !!! Q. Winning Strategy ? Ooooppppsssss!!! Dice Game II : Nagpur Version • Courtesy : Professor M N Deshpande • Institute of Science, Nagpur There are 6 dice.....with the following compositions : I II III IV V VI ***************************************************************************** • • • • • 1 7 12 16 19 21 2 8 13 17 20 32 3 9 14 18 28 33 4 10 15 25 29 34 5 11 23 26 30 35 • What is so special about this collection ? 6 22 24 27 31 36 Sample Space….. • Once more 36 pairs of outcomes when two dice are compared • Dice I • 1 7 12 16 19 21 • D 2 • I 8 • C 13 36 pairs of outcomes • E 17 • 20 • II 32 Dice Game II : Dominance…. • • • • P [ II Dominates I ] = P [ III Dominates II ] = P [ IV Dominates III ] = P [ V Dominates IV ] = P [ VI Dominates V ] = 21 / 36 > 50 % • P[ VI Dominates I ] = 5/6 + 1/36 = 31/36 • Is it a Fair Game ? Card Games…. • Full Pack ….shuffled ….draw cards one by one…note the colors [Red / Black] and put back : sampling WITH REPLACEMENT • Betting on “NO TWO SUCCESSIVE OUTCOMES ARE RED” !!! # Draws : 2 3 4 5 6 Wining Chance : 3/4 5/8 8/16 13/32 21/64 Probability Computations…. • Two Cards Randomly Drawn • Sample Space : Color Combinations (R, R) (R, B) (B, R) (B, B) Bold : Favourable ……Chance = ¾ Three Cards Randomly Drawn Sample Space…….8 color combinations (R,B,R) (R,B,B) (B,R,B) (B,B,B) (B,B,R) (R,R,R) (R,R,B) (B,R,R) : Bold Fav…5/8 Card Games : Frobenius Numbers Sequence ....0, 1, 1, 2, 3, 5, 8, 13, 21, ….. F_0, F_1, F_2, F_3, ….. F_(n+1) = F_(n-1) + F_(n) F# = Sum of Last Two F #’s P[No Two Successively Red out of n Cards] = P_n = F_(n+2) / 2^n Same for Black Cards…… References…. • • • • • Choice & Chance : Paul Levy American Mathematical Society Uspensky Feller End of Part I