Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Complex Zeros; Fundamental Theorem of Algebra Objective: โข SWBAT identify complex zeros of a polynomials by using Conjugate Root Theorem โข SWBAT find all real and complex zeros by using Fundamental Theorem of Algebra Complex Zeros; Fundamental Theorem of Algebra Complex Numbers The complex number system includes real and imaginary numbers. Standard form of a complex number is: a + bi. a and b are real numbers. i is the imaginary unit โ1 ๏ฎ (๐ 2 = โ1). Fundamental Theorem of Algebra Every complex polynomial function of degree 1 or larger (no negative integers as exponents) has at least one complex zero. Complex Zeros; Fundamental Theorem of Algebra Theorem Every complex polynomial function of degree n ๏ณ 1 has exactly n complex zeros, some of which may repeat. Conjugate Pairs Theorem If ๐ = ๐ + ๐๐ is a zero of a polynomial function whose coefficients are real numbers, then the complex conjugate ๐ = ๐ โ ๐๐ is also a zero of the function. Examples 1) A polynomial function of degree three has 2 and 3 + i as it zeros. What is the other zero? ๐ฅ =3โ๐ Complex Zeros; Fundamental Theorem of Algebra Examples 2) A polynomial function of degree 5 has 4, 2 + 3i, and 5i as it zeros. What are the other zeros? ๐ฅ = 2 โ 3๐ ๐๐๐ ๐ฅ = โ5๐ 3) A polynomial function of degree 4 has 2 with a zero multiplicity of 2 and 2 โ i as it zeros. What are the zeros? ๐๐๐ ๐ฅ = 2 + ๐ ๐ฅ = 2 ๐๐๐๐๐๐ก๐ ๐ก๐ค๐๐๐ Complex Zeros; Fundamental Theorem of Algebra Examples 4) A polynomial function of degree 4 has 2 with a zero multiplicity of 2 and 2 โ i as it zeros. What is the function? ๐ฅ=2 ๐ฅ=2 ๐ฅ =2โ๐ ๐ฅ =2+๐ ๐ ๐ฅ = (๐ฅ โ 2)(๐ฅ โ 2)(๐ฅ โ (2 โ ๐))(๐ฅ โ (2 + ๐)) ๐ ๐ฅ = (๐ฅ 2 โ4๐ฅ + 4)(๐ฅ โ 2 + ๐)(๐ฅ โ 2 โ ๐) (๐ฅ 2 โ 2๐ฅ โ ๐๐ฅ โ 2๐ฅ + 4 + 2๐ + ๐๐ฅ โ 2๐ โ ๐ 2 ) ๐ ๐ฅ = (๐ฅ 2 โ4๐ฅ + 4)(๐ฅ 2 โ 4๐ฅ + 5) ๐ ๐ฅ = ๐ฅ 4 โ 4๐ฅ 3 + 5๐ฅ 2 โ 4๐ฅ 3 + 16๐ฅ 2 โ 20๐ฅ + 4๐ฅ 2 โ 16๐ฅ + 20 ๐ ๐ฅ = ๐ฅ 4 โ 8๐ฅ 3 + 25๐ฅ 2 โ 36๐ฅ + 20 Complex Zeros; Fundamental Theorem of Algebra Find the remaining complex zeros of the given polynomial functions 5) ๐ ๐ฅ = ๐ฅ 3 + 3๐ฅ 2 + 25๐ฅ + 75 ๐ง๐๐๐: โ5๐ ๐ด๐๐๐กโ๐๐ ๐ง๐๐๐ (๐กโ๐ ๐๐๐๐๐ข๐๐๐ก๐): 5๐ ๐ฅ = โ5๐ ๐๐๐ ๐ฅ = 5๐ (๐ฅ + 5๐)(๐ฅ โ 5๐) ๐ฅ 2 โ 5๐๐ฅ + 5๐๐ฅ โ 25๐ 2 ๐ฅ 2 โ 25(โ1) ๐ฅ 2 + 25 Complex Zeros; Fundamental Theorem of Algebra ๐ ๐ฅ = ๐ฅ 3 + 3๐ฅ 2 + 25๐ฅ + 75 ๐ง๐๐๐: โ5๐ Long Division ๐ฅ +3 x ๏ซ 25 x ๏ซ 3 x ๏ซ 25 x ๏ซ 75 2 3 2 ๐ฅ3 25๐ฅ 3๐ฅ 22 3๐ฅ +75 +75 0 ๐ฅ + 3 ๐ฅ 2 + 25 (๐ฅ + 3)(๐ฅ + 5๐)(๐ฅ โ 5๐) ๐ง๐๐๐๐ : โ3, โ5๐ ๐๐๐ 5๐ Complex Zeros; Fundamental Theorem of Algebra Find the complex zeros of the given polynomial functions 6) ๐ ๐ฅ = ๐ฅ 4 โ 4๐ฅ 3 + 9๐ฅ 2 โ 20๐ฅ + 20 ๐: ±1, ±2, ±4, ±5, ±10, ±20 ๐: ±1 ๐ 1 2 4 5 10 20 : ± ,± ,± ,± ,± ,± ๐ 1 1 1 1 1 1 Possible solutions: ๐ฅ = ±1, ±2, ±4, ±5, ±10, ±20 Try: ๐ฅ = โ1 Try: ๐ฅ = 1 1 1 ๏ญ 4 9 ๏ญ 20 20 1 6 โ14 1 โ3 โ3 6 โ14 6 ๏ญ 1 1 ๏ญ 4 9 ๏ญ 20 20 1 โ1 5 โ14 โ5 14 โ34 34 54 Complex Zeros; Fundamental Theorem of Algebra ๐ ๐ฅ = ๐ฅ 4 โ 4๐ฅ 3 + 9๐ฅ 2 โ 20๐ฅ + 20 Try: ๐ฅ = 2 2 1 ๏ญ 4 9 ๏ญ 20 20 10 โ20 2 โ4 1 โ2 5 โ10 0 ๐ ๐ฅ = (๐ฅ โ 2)(๐ฅ 3 โ 2๐ฅ 2 + 5๐ฅ โ 10) ๐ ๐ฅ = (๐ฅ โ 2)(๐ฅ 2 ๐ฅ โ 2 + 5(๐ฅ โ 2)) ๐ ๐ฅ = (๐ฅ โ 2)(๐ฅ โ 2)(๐ฅ 2 + 5) Complex Zeros; Fundamental Theorem of Algebra ๐ ๐ฅ = ๐ฅ 4 โ 4๐ฅ 3 + 9๐ฅ 2 โ 20๐ฅ + 20 ๐ ๐ฅ = ๐ฅ โ 2 ๐ฅ โ 2 ๐ฅ2 + 5 = 0 ๐ฅ=2 ๐ฅ2 + 5 = 0 ๐ฅ 2 = โ5 ๐ง๐๐๐ ๐๐ข๐๐ก๐๐๐๐๐๐๐ก๐ฆ ๐๐ 2 ๐ฅ = ± โ5 ๐ฅโ2=0 ๐ฅโ2=0 ๐ฅ =± 5๐ Complex zeros: 2 with multiplicity of 2, 5 ๐, ๐๐๐ โ 5 ๐ ๐ ๐ฅ ๐๐ ๐๐๐๐ก๐๐๐๐ ๐๐๐๐ ๐ ๐ฅ = (๐ฅ โ 2)2 ๐ฅ โ 5 ๐ ๐ฅ + 5 ๐