Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
6.5 Trig. Form of a Complex Number z a bi a b 2 Ex. Z = -2 + 5i 2 2,5 z (2) 2 52 z 29 -2 5 Trigonometric Form of a Complex Number z r cos i sin r = the hypotenuse and theta = the angle. Write in trig. form Ex. z 2 2 3i 2 2 3 Find r (the hyp) & theta r=4 opp. 2 3 tan adj. 2 3 1 60 0 ref. angle 4 or 240 3 4 4 z 4(cos i sin ) 3 3 Write the complex number in standard form a + bi. Ex. z 8 cos i sin 3 3 1 3 z 2 2 i 2 2 z 2 6i Multiplication of Complex Numbers z1 z2 r1r2 cos1 2 i sin 1 2 Find the Product if 11 11 2 2 z1 2 cos i sin & z2 8 cos 6 i sin 6 3 3 2 11 2 11 z1 z2 16cos i sin 6 6 3 3 5 5 16cos i sin 16 0 i(1) 16i 2 2 2 Dividing Complex Numbers z1 r1 cos1 2 i sin 1 2 z 2 r2 z1 z2 Divide z1 24 cos 300 i sin 300 o o z2 8cos 75 i sin 75 o o z1 24 o o o o cos(300 75 ) i sin( 300 75 ) z2 8 3 cos 225 i sin 225 o 2 2 i 3 2 2 o 3 2 3 2 i 2 2 DeMoivre’s Theorem and nth Roots z rcos isin n n r cos n i sin n n Ex. Find (1 3i ) 12 Imagine how much fun it would be to multiply this example out 12 times. It would take forever. Using DeMovre’s Theorem, however, makes it short and simple. First, convert to trigonometric form. 12 2 2 (1 3i ) 2 cos i sin 3 3 2 2 12 2 cos12 i sin 12 4096cos 8 i sin 8 3 3 12 40961 0i 4096 nth Roots of a Complex Number For a positive integer n, the complex number z = r(cos x + i sin x) has exactly n distinct nth roots given by n 2k 2k r cos i sin n n where k = 0, 1, 2, . . . , n - 1 WATCH THE EXAMPLES CAREFULLY!!! Ex. Find all the sixth roots of 1. First, write 1 + 0i in trig. form. 1 0i 6 1 + 0i is over 1 and up 0. Therefore, 1 is the hypotenuse and theta is 0o. 1cos0 o isin 0 o 1 6 0 2k 0 2k 1 cos i sin 6 6 6 Now, we plug in 0, 1, 2, 3, 4, and 5 for k to find our six roots. 1 1cos 0 i sin 0 1 1 3 1 cos i sin i 3 3 2 2 2 2 1 3 1 cos i sin i 3 3 2 2 1cos i sin 1 4 4 1 3 1 cos i sin i 3 3 2 2 5 5 1 3 1 cos i sin i 3 3 2 2 Find the three cube roots of z = -2+2i Again, first convert to trig form. 2 2i 1 3 8 cos135 o isin135 o 1 1 3 135 360k 135 360k 8 2 cos isin 3 3 1 For k = 0, 1, and 2, the roots are: 2 cos 45 i sin 45 o 2 cos 285 o i sin 285 2 cos165o i sin 165o o o 3