Download sect. 1-3

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
1.3 EVALUATING LIMITS
ANALYTICALLY
Direct Substitution
• If the the value of c is contained in the domain (the
function exists at c) then
lim f (x)  f (c)
x c
Direct Substitution is valid for ALL polynomials and
rational functions with non-zero denominators

1) Find
2)

lim x  4 x  9
4
x3
x3
Find lim
x 3 x  2
2
Properties Of Limits
Basic - let b and c be real numbers and n be a
positive integer
I.
Constant
lim b  b
x c
II.
III.
Identity

Power



lim x  c
x c
n
lim x  c n
x c

Properties Of Limits
Let L, K, b, and, c be real numbers, let n be a
positive integer, and lim f (x)  L and lim g(x)  K
x c
1.
b  f (x)  L

Scalar Multiple: lim
x c
  1 
 1 
lim 2x  
 2lim x  

3
2  x  3 2 
x   
2
2.
x c
2
 2(1)

f (x)  g(x)  L  K

Sum/Difference:lim
x c
lim 3x 2  2x  lim 3x 2  lim 2x
x 4
x 4
x 4
2

 3(4)  2(4)

Properties Of Limits
Let L, K, b, and, c be real numbers, let n be a
positive integer, and lim f (x)  L and lim g(x)  K
x c
3.
a
a
Power: lim  f (x)  L
b
x c
b
x c

4.
f (x)  g(x)  L  K

Product: lim
x c
lim 2x 1x  3 lim 2x 1lim x  3
x0

x0
x0
 2(0)  10  3

Properties Of Limits
Let L, K, b, and, c be real numbers, let n be a
f (x)  L and lim g(x)  K
positive integer, and lim
x c
x c
f (x)  L

K 0
5. Quotient: lim 

x cg(x)  K

 x 2  9  lim x 2  9
 x 4
lim 
x 4
x

 x 
 lim
x 4

2
(4)  9

4
3)
Find
x2  x  2
lim
2
x 1
x 1
0

0

Technique 1: Rewrite the function by
factoring out Common factors
4)
Find
lim
x 3
x 1  2
x3
0

0

Technique 2: Rationalize the numerator
By multiplying by the complex conjugate
5)
Find
1
1

lim 2  x 2
x 0
x
0

0

Technique 3: Use algebra to rewrite the
the function
Strategies for Limits
1) Determine by recognition whether a limit
can be evaluated by direct substitution
2) If direct substitution fails, try to use some
technique (cancellation, rationalization,
or algebraic manipulation)
3) Use a graph or table to verify your
conclusion
x 2  3x 10
6) Find lim
x 2 x 2  x  6

2(x  x)  2x
7) Find lim
x 0
x

8) Find
lim
x 0

x  1 1
x
9) Use
lim f ( x )  2and lim g ( x )  3
x c
lim [5 g ( x)] 
x c
lim [ f ( x)  g ( x)] 
x c
lim [ f ( x) g ( x)] 
x c
f ( x)
lim

x c g ( x )
xc
Homework
Page 67
# 5 – 25 odd, 37, 38, 39, 41-57 odd,
Related documents